- 从决策树到随机森林:Python机器学习里的“树形家族“深度实战与原理拆解
小张在编程
机器学习决策树随机森林
引言在机器学习的算法森林中,有一对"树形兄弟"始终占据着C位——决策树像个逻辑清晰的"老教授",用可视化的树状结构把复杂决策过程拆解成"是/否"的简单判断;而它的进阶版随机森林更像一支"精英军团",通过多棵决策树的"投票表决",在准确性与抗过拟合能力上实现了质的飞跃。无论是医疗诊断中的疾病预测,还是金融风控里的违约判别,这对组合都用强大的适应性证明着自己的"算法常青树"地位。今天,我们就从原理到实
- 什么是 PoS(权益证明)
MonkeyKing.sun
pos
PoS(ProofofStake,权益证明)是区块链中常用的一种共识算法,作为PoW(工作量证明)的替代方案,它通过“持币数量+持有时间”决定谁有权记账(打包区块),从而降低能耗、提升效率。一、什么是PoS(权益证明)?PoS是一种基于“持有代币数量”的区块链共识机制,持币越多、持币越久,获得打包新区块机会的概率越高。换句话说,不是靠算力挖矿,而是靠“你拥有多少币”来竞争记账权。二、PoS的核心原
- 实现make_power_of_two函数
洞阳
c++面试c++
目录代码make_power_of_two函数解析:将数值转换为大于等于它的最小2的幂一、函数功能与核心逻辑二、代码实现与逐行解析三、逐步骤原理解析四、位运算的数学原理五、不同输入的转换示例六、算法复杂度与适用场景七、与其他实现方式的对比八、注意事项总结代码该函数将任意n转换为大于等于n的最小2的幂(如n=10→16,n=16→16)size_tmake_power_of_two(size_tn)
- 深入详解:随机森林算法——概念、原理、实现与应用场景
猿享天开
算法随机森林机器学习
深入详解:随机森林算法——概念、原理、实现与应用场景随机森林(RandomForest,RF)是一种经典的集成学习算法,广泛应用于机器学习任务。本文将通过图文结合的方式,全面解析随机森林的核心原理、实现细节和应用实践,帮助读者建立系统认知。1.核心概念与直观理解1.1什么是随机森林?随机森林是一种基于决策树的集成学习算法,通过构建多棵决策树进行协同预测。其核心思想是"三个臭皮匠,顶个诸葛亮"——多
- 【项目实战】Redis使用场景之基于Redis实现分布式限流
本本本添哥
002-进阶开发能力003-数据库redis分布式数据库
一、技术概览1.1定义分布式限流是指在分布式系统中限制请求的速率,以保护后端服务不被过多的请求压垮。它可以帮助我们控制系统的负载,保证服务的稳定性。Redis是一个高性能的键值存储系统,常用于缓存、消息队列和实时分析等场景。由于其支持丰富的数据结构和原子操作,非常适合用来实现分布式限流。专业术语:令牌桶算法(TokenBucket):一种流量整形算法,允许突发流量但不超过平均速度。漏桶算法(Lea
- 人工智能大模型原理与应用实战:大模型在金融风控中的应用
AI天才研究院
LLM大模型落地实战指南大数据人工智能语言模型AILLMJavaPython架构设计AgentRPA
文章目录人工智能大模型原理与应用实战:大模型在金融风控中的应用01.背景介绍1.1金融风控的挑战1.2大模型的优势2.核心概念与联系2.1大模型在金融风控中的应用场景2.2大模型与传统风控技术的结合3.核心算法原理具体操作步骤3.1基于大模型的欺诈检测3.2基于大模型的信用评估4.数学模型和公式详细讲解举例说明4.1逻辑回归模型4.2XGBoost模型5.项目实践:代码实例和详细解释说明5.1基于
- 浅谈卷积神经网络(CNN)
cyc&阿灿
cnn人工智能神经网络
卷积神经网络(ConvolutionalNeuralNetworks,CNN)作为深度学习领域最具影响力的架构之一,已在计算机视觉、自然语言处理、医学影像分析等领域取得了革命性突破。本文将系统全面地剖析CNN的核心原理、关键组件、经典模型、数学基础、训练技巧以及最新进展,通过理论解析与代码实践相结合的方式,帮助读者深入掌握这一重要技术。一、CNN基础与核心思想1.1传统神经网络的局限性在处理图像等
- Go项目限流全攻略:超越中间件的全方位解决方案
码农老gou
golang中间件开发语言
引言:限流在分布式系统中的重要性在当今高并发的互联网应用中,流量控制已成为保障系统稳定性的关键手段。一次突发的流量洪峰可能导致整个系统崩溃,造成不可估量的损失。作为Go开发者,我们常常会面临这样的面试问题:Go项目中如何实现限流?仅仅使用中间件就足够了吗?本文将深入探讨Go项目中的限流策略,分析中间件的局限性,并介绍超越中间件的全方位解决方案。一、常见限流算法解析1.令牌桶算法(TokenBuck
- 随机森林详解:原理、优势与应用实践
大千AI助手
人工智能Python#OTHER随机森林算法机器学习决策树人工智能DecisionTree数据挖掘
本文由「大千AI助手」原创发布,专注用真话讲AI,回归技术本质。拒绝神话或妖魔化。搜索「大千AI助手」关注我,一起撕掉过度包装,学习真实的AI技术!随机森林介绍1.定义:随机森林是一种强大的、高度灵活的集成学习(EnsembleLearning)算法,主要用于分类和回归任务。它的核心思想是构建多棵决策树(DecisionTree),并将这些树的预测结果进行组合(例如,分类任务采用投票,回归任务采用
- 【第二章:机器学习与神经网络概述】03.类算法理论与实践-(3)决策树分类器
IT古董
人工智能课程机器学习算法神经网络
第二章:机器学习与神经网络概述第三部分:类算法理论与实践第三节:决策树分类器内容:信息增益、剪枝技术、过拟合与泛化能力。决策树是一种常用于分类和回归的树状结构模型,它通过一系列特征判断进行决策,有良好的可解释性。一、基本概念节点(Node):表示特征判断条件边(Branch):表示特征判断的结果路径叶子节点(Leaf):表示分类结果二、划分准则:信息增益(InformationGain)信息增益衡
- 算法练习-02
亮亮爱刷题
算法数据结构c++
今天给大家带来的是第二天的几道练习题,包括几道思路特别巧妙的算法题,以及提升的背包问题,相信这类问题对大家算法能力的提升还是十分有帮助的,希望大家学完可以给博主点一个关注。第一题:问题描述给定一个长度为n的数组a,小蓝希望从数组中选择若干个元素(可以不连续),并将它们重新排列,使得这些元素能够形成一个先严格递增然后严格递减的子序列(可以没有递增部分或递减部分)。你需要求出在满足这个条件下,最多可以
- 基于Redis分布式的限流
chi_666
redis分布式数据库
以下是基于Redis实现分布式限流的Java解决方案,包含多种限流算法和完整实现代码:一、限流算法选择与实现1.固定窗口算法(SimpleRateLimiter)publicclassRedisFixedWindowRateLimiter{privatefinalStringRedisTemplateredisTemplate;privatefinalStringscript="localcurr
- Web中间件性能调优指南:线程池、长连接与负载均衡的最佳实践
编程实战派-李工
《Java负载均衡中间件优化Tomcat调优Nginx配置性能工程线程池技术Keep-Alive优化
目录引言一、Web容器线程池配置不当1.1线程池参数的核心作用与影响1.2线程池大小计算模型1.3动态调优实践二、Keep-Alive机制配置缺陷2.1Keep-Alive的工作原理2.2典型配置问题与影响2.3优化配置建议三、负载均衡策略缺失3.1负载均衡的核心价值3.2主流负载均衡算法对比3.3Nginx关键配置优化四、全链路压测与调优方案4.1压测实施流程4.2典型优化案例4.3持续监控体系
- 从入门到精通:前端工程师必学的 JSON 全解析
前端视界
前端json状态模式ai
从入门到精通:前端工程师必学的JSON全解析关键词:JSON、前端工程师、数据交换、JavaScript、数据格式摘要:本文围绕前端工程师必学的JSON展开全面解析。从JSON的基本概念、背景知识入手,深入探讨其核心原理、算法实现、数学模型等方面。通过详细的代码示例和实际应用场景分析,帮助前端工程师从入门到精通掌握JSON的使用。同时,提供了丰富的学习资源、开发工具和相关论文推荐,最后对JSON的
- LSNet: 基于侧向抑制的神经网络
碳酸的唐
模型养成与叙述有意思的py库神经网络人工智能深度学习
引言在计算机视觉领域,我们一直在寻找灵感来源以提高图像处理和识别的效果。而人类视觉系统作为经过数百万年进化的精密系统,无疑是最好的参考对象之一。今天,我要向大家介绍一个名为LSNet(LateralSuppressionNetwork,侧向抑制网络)的技术,它模拟了人类视觉系统中的侧向抑制机制,为计算机视觉任务带来了新的可能性。什么是侧向抑制?侧向抑制(LateralSuppression),也被
- 【网络安全】对称密码体制
Hacker_xingchen
web安全安全网络
1.对称密码体制概述1.1定义与特点对称密码体制,也称为单钥密码体制,是一种加密方法,其中加密和解密过程使用相同的密钥。这种加密方式的主要特点包括简单、高效和计算速度快,适合于大量数据的快速加密和解密。对称密码体制的安全性完全依赖于密钥的保密性,一旦密钥被泄露,加密的安全性就会受到威胁。效率:对称密码算法通常比非对称密码算法要快,因为它们的算法结构相对简单,计算量较小。密钥管理:对称密码体制的密钥
- 【学习】《算法图解》第七章学习笔记:树
程序员
前言在前面的章节中,我们学习了数组、链表、散列表等基本数据结构,以及一些基础算法。本章将介绍一种非常重要的数据结构——树(Tree),特别是二叉搜索树(BinarySearchTree)。树结构在计算机科学中应用广泛,从文件系统到数据库再到人工智能,都能看到树的身影。《算法图解》第七章深入浅出地介绍了树的基本概念、实现和应用,帮助读者理解这一关键数据结构。一、树的基本概念(一)什么是树树是一种分层
- OpenCV 三维重建实战:从工业检测到自动驾驶,3 大场景代码全解析
从零开始学习人工智能
opencv自动驾驶数码相机
:工业零部件三维建模与检测案例背景:在汽车制造工厂,对于复杂形状的发动机零部件质量检测与逆向工程需求,需要高精度的三维模型。传统检测方法效率低且精度有限,而三维重建技术可快速获取零部件三维信息,实现高效检测与设计优化。技术实现:使用多个相机从不同角度拍摄零部件,利用calib3d模块进行相机标定,获取准确的相机内参和外参。通过特征点检测与匹配算法(如SIFT、ORB等)找到不同图像间的对应点,再用
- Deepoc大模型在半导体设计优化与自动化
Deepoch
自动化运维人工智能机器人单片机ai科技
大模型在半导体设计领域的应用已形成多维度技术渗透,其核心价值在于通过数据驱动的方式重构传统设计范式。以下从技术方向、实现路径及行业影响三个层面展开详细分析:参数化建模与动态调优基于物理的深度学习模型(如PINNs)将器件物理方程嵌入神经网络架构,实现工艺参数与电学性能的非线性映射建模。通过强化学习框架(如PPO算法)动态调整掺杂浓度、栅极长度等关键参数,在3nm节点下实现驱动电流提升18%的同时降
- RabbitMQ学习笔记:rabbitmq-server -detached Warning: PID file not written; -detached was passed
码炫课堂-码哥
rabbitmq专题rabbitmq
作者简介:大家好,我是smart哥,前中兴通讯、美团架构师,现某互联网公司CTO联系qq:184480602,加我进群,大家一起学习,一起进步,一起对抗互联网寒冬学习必须往深处挖,挖的越深,基础越扎实!阶段1、深入多线程阶段2、深入多线程设计模式阶段3、深入juc源码解析阶段4、深入jdk其余源码解析
- 卷积神经网络
亿只小灿灿
Python算法与数据结构人工智能cnn人工智能神经网络
一、引言在当今人工智能的浪潮中,卷积神经网络(ConvolutionalNeuralNetwork,CNN)无疑是一颗璀璨的明星。它在图像识别、语音处理、自然语言处理等众多领域取得了巨大的成功,极大地推动了人工智能技术的发展。那么,什么是卷积神经网络?它的算法原理是什么?本文将深入探讨这些问题,并通过Python代码实现一个简单的卷积神经网络,以帮助读者更好地理解和掌握这一强大的技术。二、卷积神经
- 【数据挖掘】分类算法学习—ID3
会的全对٩(ˊᗜˋ*)و
数据挖掘数据挖掘分类学习经验分享ID3
分类算法学习—ID3ID3(IterativeDichotomiser3)是一种经典的决策树学习算法,由RossQuinlan于1986年提出,主要用于处理离散特征的分类问题。其核心思想是通过信息增益选择最优特征进行节点分裂,递归构建决策树。要求:理解并掌握ID3算法,理解算法的原理,能够实现算法,并对给定的数据集进行分类,分析个人参股的情况代码实现:importpandasaspdimportn
- ESP32学习笔记-读取SD卡并显示到屏幕上
搞机械的假程序猿
ESP32学习笔记学习笔记ESP32
硬件FireBeetle2ESP32-E开发板1.54"240x240IPS广视角TFT显示屏硬件接线测试代码//加载库#include"Arduino.h"#include"FS.h"#include"SD.h"#include"SPI.h"#include"DFRobot_GDL.h"//定义显示屏针脚#defineTFT_DCD2#defineTFT_CSD6#defineTFT_RSTD3
- C++入门笔记
张峻铖
C++c++
写在开头初衷:对于一个程序员/算法工程师来说,只会Python未免过于单薄了。出于未来找工作的需要,开始学习C++,并使用C++刷LeetCode。背景:本科有C语言课程,甚至学过汇编,研究生阶段主要使用Python。提醒:该系列文章以尽可能快地应用C++(刷题)为目的,暂以B站黑马程序员C++教程为教材,主要记录重点内容和对个人来讲不易理解或陌生的内容,具有较浓的个人笔记特点,因此,在全面性和权
- 【5分钟力扣】1160.拼写单词(python3实现)
金鞍少年
金鞍少年的刷题之路字符串leetcode力扣1160题python拼写单词
文章目录一、前言二、题目三、哈希表解法3.1哈希表基本概念3.2解题思路3.3代码实例四、字符串比较解法4.1解题思路4.2代码实例一、前言如果放弃太早,你永远都不知道自己会错过什么。每天五分钟,看懂一道简单、中等难度的算法题,尽可能将复杂的题讲清楚。疯狂学习python中,2020-07-20更新二、题目给你一份『词汇表』(字符串数组)words和一张『字母表』(字符串)chars。假如你可以用
- Open3D 进阶(31)渐进三角网(PTD)地面滤波
点云侠
点云进阶线性代数算法计算机视觉python
目录一、算法原理1、PTD算法2、实现流程二、代码实现三、参数指南四、结果展示。一、算法原理1、PTD算法 渐进三角网地面滤波算法(ProgressiveTINDensification,PTD)是一种广泛应用于机载LiDAR点云数据处理的滤波方法,旨在从复杂场景中精确分离地面点,以生成数字高程模型(DEM)。2、实现流程 PTD的核心思想是迭代加密三角网,逐步逼近真实地形:实现流程主要包括以
- C++入门学习笔记
杨建QAQ
c++学习笔记
C++入门学习笔记1:命名空间2:C++输入&输出3:缺省参数4:函数重载5:引用6:内联函数1:命名空间在C语言的学习中变量、函数和类的名称将都存在于全局作用域中,可能会导致很多冲突,使用命名空间的目的是对标识符的名称进行本地化,以避免命名冲突或名字污染,namespace关键字的出现就是针对这种问题的。#include#includeintrand=10;//C语言没办法解决类似这样的命名冲突
- 怎么对教育视频进行加密?提高视频的安全性!
菜包eo
音视频
前言在数字教育蓬勃发展的当下,知识版权保护成为行业核心命题。教育视频作为知识传播的重要载体,其加密技术的优劣直接关乎机构的核心竞争力与用户权益。本文将深入剖析高安全性视频加密方案,解锁教育内容防护的关键密码。一、VRM分片错序视频加密采用分布式编码技术,将视频文件物理切片,每片视频进行多种算法混合型加密,同时结合独立研制密码本,将关键数据进行错序混淆,对视频文件进行最高级别加密,这样经过加密的视频
- C++实现一个基于多态的职工管理系统(附源码)
loveCC_orange
C/C++c++面试华为后端开发多态
之前为了找实习,学了Python,刷了五六十道算法题,然后就开始投简历面试了,结果就是各个大厂一轮游,要Python开发的岗位又少的可怜。但所幸华为的实习面试通过了~本来以为这样就可以等着拿offer了,结果泡池子失败,今年华为的RAN研究部offer数量缩水,由于没在前四之列,所以就被pass掉了。然后又重新开始海投简历找实习。在无数次碰壁之后,深感自己才疏学浅,学的东西还是太少了。于是继续刷题
- 【AI大模型】26、算力受限下的模型工程:从LoRA到弹性智能系统的优化实践
无心水
AI大模型人工智能搜索引擎LoRA大语言模型微调模型压缩知识蒸馏量化技术
引言:算力瓶颈与模型工程的突围之路在人工智能领域,大语言模型的发展正呈现出参数规模爆炸式增长的趋势。从GPT-3的1750亿参数到PaLM的5400亿参数,模型能力的提升往往伴随着对算力资源的极度渴求。然而,对于大多数企业和研究者而言,动辄数百GB的显存需求、数十万块GPU的训练集群显然是难以企及的"算力鸿沟"。当面对"无米之炊"的困境时,模型工程技术成为突破算力瓶颈的核心路径——通过算法创新而非
- iOS http封装
374016526
ios服务器交互http网络请求
程序开发避免不了与服务器的交互,这里打包了一个自己写的http交互库。希望可以帮到大家。
内置一个basehttp,当我们创建自己的service可以继承实现。
KuroAppBaseHttp *baseHttp = [[KuroAppBaseHttp alloc] init];
[baseHttp setDelegate:self];
[baseHttp
- lolcat :一个在 Linux 终端中输出彩虹特效的命令行工具
brotherlamp
linuxlinux教程linux视频linux自学linux资料
那些相信 Linux 命令行是单调无聊且没有任何乐趣的人们,你们错了,这里有一些有关 Linux 的文章,它们展示着 Linux 是如何的有趣和“淘气” 。
在本文中,我将讨论一个名为“lolcat”的小工具 – 它可以在终端中生成彩虹般的颜色。
何为 lolcat ?
Lolcat 是一个针对 Linux,BSD 和 OSX 平台的工具,它类似于 cat 命令,并为 cat
- MongoDB索引管理(1)——[九]
eksliang
mongodbMongoDB管理索引
转载请出自出处:http://eksliang.iteye.com/blog/2178427 一、概述
数据库的索引与书籍的索引类似,有了索引就不需要翻转整本书。数据库的索引跟这个原理一样,首先在索引中找,在索引中找到条目以后,就可以直接跳转到目标文档的位置,从而使查询速度提高几个数据量级。
不使用索引的查询称
- Informatica参数及变量
18289753290
Informatica参数变量
下面是本人通俗的理解,如有不对之处,希望指正 info参数的设置:在info中用到的参数都在server的专门的配置文件中(最好以parma)结尾 下面的GLOBAl就是全局的,$开头的是系统级变量,$$开头的变量是自定义变量。如果是在session中或者mapping中用到的变量就是局部变量,那就把global换成对应的session或者mapping名字。
[GLOBAL] $Par
- python 解析unicode字符串为utf8编码字符串
酷的飞上天空
unicode
php返回的json字符串如果包含中文,则会被转换成\uxx格式的unicode编码字符串返回。
在浏览器中能正常识别这种编码,但是后台程序却不能识别,直接输出显示的是\uxx的字符,并未进行转码。
转换方式如下
>>> import json
>>> q = '{"text":"\u4
- Hibernate的总结
永夜-极光
Hibernate
1.hibernate的作用,简化对数据库的编码,使开发人员不必再与复杂的sql语句打交道
做项目大部分都需要用JAVA来链接数据库,比如你要做一个会员注册的 页面,那么 获取到用户填写的 基本信后,你要把这些基本信息存入数据库对应的表中,不用hibernate还有mybatis之类的框架,都不用的话就得用JDBC,也就是JAVA自己的,用这个东西你要写很多的代码,比如保存注册信
- SyntaxError: Non-UTF-8 code starting with '\xc4'
随便小屋
python
刚开始看一下Python语言,传说听强大的,但我感觉还是没Java强吧!
写Hello World的时候就遇到一个问题,在Eclipse中写的,代码如下
'''
Created on 2014年10月27日
@author: Logic
'''
print("Hello World!");
运行结果
SyntaxError: Non-UTF-8
- 学会敬酒礼仪 不做酒席菜鸟
aijuans
菜鸟
俗话说,酒是越喝越厚,但在酒桌上也有很多学问讲究,以下总结了一些酒桌上的你不得不注意的小细节。
细节一:领导相互喝完才轮到自己敬酒。敬酒一定要站起来,双手举杯。
细节二:可以多人敬一人,决不可一人敬多人,除非你是领导。
细节三:自己敬别人,如果不碰杯,自己喝多少可视乎情况而定,比如对方酒量,对方喝酒态度,切不可比对方喝得少,要知道是自己敬人。
细节四:自己敬别人,如果碰杯,一
- 《创新者的基因》读书笔记
aoyouzi
读书笔记《创新者的基因》
创新者的基因
创新者的“基因”,即最具创意的企业家具备的五种“发现技能”:联想,观察,实验,发问,建立人脉。
第一部分破坏性创新,从你开始
第一章破坏性创新者的基因
如何获得启示:
发现以下的因素起到了催化剂的作用:(1) -个挑战现状的问题;(2)对某项技术、某个公司或顾客的观察;(3) -次尝试新鲜事物的经验或实验;(4)与某人进行了一次交谈,为他点醒
- 表单验证技术
百合不是茶
JavaScriptDOM对象String对象事件
js最主要的功能就是验证表单,下面是我对表单验证的一些理解,贴出来与大家交流交流 ,数显我们要知道表单验证需要的技术点, String对象,事件,函数
一:String对象;通常是对字符串的操作;
1,String的属性;
字符串.length;表示该字符串的长度;
var str= "java"
- web.xml配置详解之context-param
bijian1013
javaservletweb.xmlcontext-param
一.格式定义:
<context-param>
<param-name>contextConfigLocation</param-name>
<param-value>contextConfigLocationValue></param-value>
</context-param>
作用:该元
- Web系统常见编码漏洞(开发工程师知晓)
Bill_chen
sqlPHPWebfckeditor脚本
1.头号大敌:SQL Injection
原因:程序中对用户输入检查不严格,用户可以提交一段数据库查询代码,根据程序返回的结果,
获得某些他想得知的数据,这就是所谓的SQL Injection,即SQL注入。
本质:
对于输入检查不充分,导致SQL语句将用户提交的非法数据当作语句的一部分来执行。
示例:
String query = "SELECT id FROM users
- 【MongoDB学习笔记六】MongoDB修改器
bit1129
mongodb
本文首先介绍下MongoDB的基本的增删改查操作,然后,详细介绍MongoDB提供的修改器,以完成各种各样的文档更新操作 MongoDB的主要操作
show dbs 显示当前用户能看到哪些数据库
use foobar 将数据库切换到foobar
show collections 显示当前数据库有哪些集合
db.people.update,update不带参数,可
- 提高职业素养,做好人生规划
白糖_
人生
培训讲师是成都著名的企业培训讲师,他在讲课中提出的一些观点很新颖,在此我收录了一些分享一下。注:讲师的观点不代表本人的观点,这些东西大家自己揣摩。
1、什么是职业规划:职业规划并不完全代表你到什么阶段要当什么官要拿多少钱,这些都只是梦想。职业规划是清楚的认识自己现在缺什么,这个阶段该学习什么,下个阶段缺什么,又应该怎么去规划学习,这样才算是规划。
- 国外的网站你都到哪边看?
bozch
技术网站国外
学习软件开发技术,如果没有什么英文基础,最好还是看国内的一些技术网站,例如:开源OSchina,csdn,iteye,51cto等等。
个人感觉如果英语基础能力不错的话,可以浏览国外的网站来进行软件技术基础的学习,例如java开发中常用的到的网站有apache.org 里面有apache的很多Projects,springframework.org是spring相关的项目网站,还有几个感觉不错的
- 编程之美-光影切割问题
bylijinnan
编程之美
package a;
public class DisorderCount {
/**《编程之美》“光影切割问题”
* 主要是两个问题:
* 1.数学公式(设定没有三条以上的直线交于同一点):
* 两条直线最多一个交点,将平面分成了4个区域;
* 三条直线最多三个交点,将平面分成了7个区域;
* 可以推出:N条直线 M个交点,区域数为N+M+1。
- 关于Web跨站执行脚本概念
chenbowen00
Web安全跨站执行脚本
跨站脚本攻击(XSS)是web应用程序中最危险和最常见的安全漏洞之一。安全研究人员发现这个漏洞在最受欢迎的网站,包括谷歌、Facebook、亚马逊、PayPal,和许多其他网站。如果你看看bug赏金计划,大多数报告的问题属于 XSS。为了防止跨站脚本攻击,浏览器也有自己的过滤器,但安全研究人员总是想方设法绕过这些过滤器。这个漏洞是通常用于执行cookie窃取、恶意软件传播,会话劫持,恶意重定向。在
- [开源项目与投资]投资开源项目之前需要统计该项目已有的用户数
comsci
开源项目
现在国内和国外,特别是美国那边,突然出现很多开源项目,但是这些项目的用户有多少,有多少忠诚的粉丝,对于投资者来讲,完全是一个未知数,那么要投资开源项目,我们投资者必须准确无误的知道该项目的全部情况,包括项目发起人的情况,项目的维持时间..项目的技术水平,项目的参与者的势力,项目投入产出的效益.....
- oracle alert log file(告警日志文件)
daizj
oracle告警日志文件alert log file
The alert log is a chronological log of messages and errors, and includes the following items:
All internal errors (ORA-00600), block corruption errors (ORA-01578), and deadlock errors (ORA-00060)
- 关于 CAS SSO 文章声明
denger
SSO
由于几年前写了几篇 CAS 系列的文章,之后陆续有人参照文章去实现,可都遇到了各种问题,同时经常或多或少的收到不少人的求助。现在这时特此说明几点:
1. 那些文章发表于好几年前了,CAS 已经更新几个很多版本了,由于近年已经没有做该领域方面的事情,所有文章也没有持续更新。
2. 文章只是提供思路,尽管 CAS 版本已经发生变化,但原理和流程仍然一致。最重要的是明白原理,然后
- 初二上学期难记单词
dcj3sjt126com
englishword
lesson 课
traffic 交通
matter 要紧;事物
happy 快乐的,幸福的
second 第二的
idea 主意;想法;意见
mean 意味着
important 重要的,重大的
never 从来,决不
afraid 害怕 的
fifth 第五的
hometown 故乡,家乡
discuss 讨论;议论
east 东方的
agree 同意;赞成
bo
- uicollectionview 纯代码布局, 添加头部视图
dcj3sjt126com
Collection
#import <UIKit/UIKit.h>
@interface myHeadView : UICollectionReusableView
{
UILabel *TitleLable;
}
-(void)setTextTitle;
@end
#import "myHeadView.h"
@implementation m
- N 位随机数字串的 JAVA 生成实现
FX夜归人
javaMath随机数Random
/**
* 功能描述 随机数工具类<br />
* @author FengXueYeGuiRen
* 创建时间 2014-7-25<br />
*/
public class RandomUtil {
// 随机数生成器
private static java.util.Random random = new java.util.R
- Ehcache(09)——缓存Web页面
234390216
ehcache页面缓存
页面缓存
目录
1 SimplePageCachingFilter
1.1 calculateKey
1.2 可配置的初始化参数
1.2.1 cach
- spring中少用的注解@primary解析
jackyrong
primary
这次看下spring中少见的注解@primary注解,例子
@Component
public class MetalSinger implements Singer{
@Override
public String sing(String lyrics) {
return "I am singing with DIO voice
- Java几款性能分析工具的对比
lbwahoo
java
Java几款性能分析工具的对比
摘自:http://my.oschina.net/liux/blog/51800
在给客户的应用程序维护的过程中,我注意到在高负载下的一些性能问题。理论上,增加对应用程序的负载会使性能等比率的下降。然而,我认为性能下降的比率远远高于负载的增加。我也发现,性能可以通过改变应用程序的逻辑来提升,甚至达到极限。为了更详细的了解这一点,我们需要做一些性能
- JVM参数配置大全
nickys
jvm应用服务器
JVM参数配置大全
/usr/local/jdk/bin/java -Dresin.home=/usr/local/resin -server -Xms1800M -Xmx1800M -Xmn300M -Xss512K -XX:PermSize=300M -XX:MaxPermSize=300M -XX:SurvivorRatio=8 -XX:MaxTenuringThreshold=5 -
- 搭建 CentOS 6 服务器(14) - squid、Varnish
rensanning
varnish
(一)squid
安装
# yum install httpd-tools -y
# htpasswd -c -b /etc/squid/passwords squiduser 123456
# yum install squid -y
设置
# cp /etc/squid/squid.conf /etc/squid/squid.conf.bak
# vi /etc/
- Spring缓存注解@Cache使用
tom_seed
spring
参考资料
http://www.ibm.com/developerworks/cn/opensource/os-cn-spring-cache/
http://swiftlet.net/archives/774
缓存注解有以下三个:
@Cacheable @CacheEvict @CachePut
- dom4j解析XML时出现"java.lang.noclassdeffounderror: org/jaxen/jaxenexception"错误
xp9802
java.lang.NoClassDefFoundError: org/jaxen/JaxenExc
关键字: java.lang.noclassdeffounderror: org/jaxen/jaxenexception
使用dom4j解析XML时,要快速获取某个节点的数据,使用XPath是个不错的方法,dom4j的快速手册里也建议使用这种方式
执行时却抛出以下异常:
Exceptio