L1和L2简单易懂的理解

一、正则化(Regularization)

                         机器学习中几乎都可以看到损失函数后面会添加一个额外项,常用的额外项一般有两种,一般英文称作ℓ1ℓ1-norm和ℓ2ℓ2-norm,中文称作L1正则化和L2正则化,或者L1范数和L2范数。

                         L1正则化和L2正则化可以看做是损失函数的惩罚项。所谓『惩罚』是指对损失函数中的某些参数做一些限制。对于线性回归模型,使用L1正则化的模型建叫做Lasso回归,使用L2正则化的模型叫做Ridge回归(岭回归)。下图是Python中Lasso回归的损失函数,式中加号后面一项α||w||1α||w||1即为L1正则化项。
lasso regression
下图是Python中Ridge回归的损失函数,式中加号后面一项α||w||22α||w||22即为L2正则化项。
ridge regression
一般回归分析中回归ww表示特征的系数,从上式可以看到正则化项是对系数做了处理(限制)。L1正则化和L2正则化的说明如下

L1正则化是指权值向量ww中各个元素的绝对值之和,通常表示为||w||1||w||1
L2正则化是指权值向量ww中各个元素的平方和然后再求平方根(可以看到Ridge回归的L2正则化项有平方符号),通常表示为||w||2||w||2
一般都会在正则化项之前添加一个系数,Python中用αα表示,一些文章也用λλ表示。这个系数需要用户指定。

那添加L1和L2正则化有什么用?下面是L1正则化和L2正则化的作用,这些表述可以在很多文章中找到。

● L1正则化可以产生稀疏权值矩阵,即产生一个稀疏模型,可以用于特征选择
● L2正则化可以防止模型过拟合(overfitting);一定程度上,L1也可以防止过拟合

稀疏模型与特征选择

上面提到L1正则化有助于生成一个稀疏权值矩阵,进而可以用于特征选择。为什么要生成一个稀疏矩阵?

稀疏矩阵指的是很多元素为0,只有少数元素是非零值的矩阵,即得到的线性回归模型的大部分系数都是0. 通常机器学习中特征数量很多,例如文本处理时,如果将一个词组(term)作为一个特征,那么特征数量会达到上万个(bigram)。在预测或分类时,那么多特征显然难以选择,但是如果代入这些特征得到的模型是一个稀疏模型,表示只有少数特征对这个模型有贡献,绝大部分特征是没有贡献的,或者贡献微小(因为它们前面的系数是0或者是很小的值,即使去掉对模型也没有什么影响),此时我们就可以只关注系数是非零值的特征。这就是稀疏模型与特征选择的关系。

L1和L2正则化的直观理解

这部分内容将解释为什么L1正则化可以产生稀疏模型(L1是怎么让系数等于零的),以及为什么L2正则化可以防止过拟合

L1正则化和特征选择

假设有如下带L1正则化的损失函数:
                                                                                                                                           这里写图片描述
这里写图片描述
这里写图片描述
图2 L2正则化

二维平面下L2正则化的函数图形是个圆,与方形相比,被磨去了棱角。因此J0J0与LL相交时使得w1w1或w2w2等于零的机率小了许多,这就是为什么L2正则化不具有稀疏性的原因。

L2正则化和过拟合

拟合过程中通常都倾向于让权值尽可能小,最后构造一个所有参数都比较小的模型。因为一般认为参数值小的模型比较简单,能适应不同的数据集,也在一定程度上避免了过拟合现象。可以设想一下对于一个线性回归方程,若参数很大,那么只要数据偏移一点点,就会对结果造成很大的影响;但如果参数足够小,数据偏移得多一点也不会对结果造成什么影响,专业一点的说法是『抗扰动能力强』。
这里写图片描述

正则化参数的选择

L1正则化参数

通常越大的λλ可以让代价函数在参数为0时取到最小值。下面是一个简单的例子,这个例子来自Quora上的问答。为了方便叙述,一些符号跟这篇帖子的符号保持一致。

假设有如下带L1正则化项的代价函数:
这里写图片描述
@图3 L1正则化参数的选择
图3 L1正则化参数的选择

分别取λ=0.5λ=0.5和λ=2λ=2,可以看到越大的λλ越容易使F(x)F(x)在x=0x=0时取到最小值。

你可能感兴趣的:(机器学习)