Matlab生成dsp程序——官方例程学习

Matlab生成dsp程序——官方例程学习

  • 写在下面的话
  • ADC-PWM例子学习
    • 一、基本功能
    • 二、生成代码分析
    • 三、总结

写在下面的话

   还是很建议大家多去学习官方例程的,真的能够收获到很多很多东西的!例程和ccs程序我也会打包上传的!
官方链接:MW官方例程
打包程序+模型链接:模型程序

ADC-PWM例子学习

一、基本功能

    ADC采集到的模拟电压控制PWM波形的占空比(周期不发生改变)。当处理器收到ADC中断(ADCINT)时,触发中断服务程序(ISR)并执行子系统(ADC-PWM子系统)。ADC-PWM子系统由ADC与EPWM模块组成,该模块驱动PWM模块的占空比输入端口。PWM模块配置为触发ADC模块的转换开始(SOC)。

  • 1.结算器Slover

Matlab生成dsp程序——官方例程学习_第1张图片

    I、 这个计算的步长,设置会在对应程序中生成一个变量modelBaseRate,之后设置的Timer0会每0.4s进入一次中断。

float modelBaseRate = 0.4;
float systemClock = 200;
……
    
ConfigCpuTimer(&CpuTimer0, systemClock, baseRate *1000000);//baseRate=modelBaseRate

二、生成代码分析

   生成四个变量:

volatile int IsrOverrun = 0;
static boolean_T OverrunFlag = 0;

volatile boolean_T stopRequested = false;
volatile boolean_T runModel = false;                 //三个布尔型变量,一个int形

    进入主函数之后生成两个浮点型变量:

int main(void)
{
     
float modelBaseRate = 0.4;           //这个是求解器设置的步长
float systemClock = 200;             //CPU晶振频率,与Clocking中的参数相互对应

c2000_flash_init();                  //将Flash有关程序拷贝到RAM执行(Init_Flash、Flashoff程序都存放在Flash中)
init_board();       				 //初始化各个部件(GPIO、时钟等)

#ifdef MW_EXEC_PROFILER_ON

  config_profilerTimer();

#endif                                //目前猜测是用来调试使用,Simulink环境也支持调试
    /*接下下个代码块部分*/

    下面先看一个结构体:

c2807x_2837xx_adcpwmasynctes_M 结构体:(因为前面都是文件名这里简记为_M结构体)
struct tag_RTM_c2807x_2837xx_adcpwma_T {
     
  const char_T *errorStatus;
};

rtmSetErrorStatus(c2807x_2837xx_adcpwmasynctes_M, 0);   //给_M结构体中的errorStatus标志赋值为0 c2807x_2837xx_adcpwmasynctest_ert_initialize();         //初始化函数

/*再看一个结构体*/
c2807x_2837xx_adcpwmasynctest_B 结构体:(因为前面都是文件名这里简记为_B结构体)
typedef struct {
     
  uint16_T ADC;                        /* '/ADC' */
} B_c2807x_2837xx_adcpwmasyncte_T;                     //注释中给的是模块信号结构体
(void) memset(((void *) &c2807x_2837xx_adcpwmasynctest_B), 0,
                sizeof(B_c2807x_2837xx_adcpwmasyncte_T));     //给_B结构体赋值为0

void c2807x_2837xx_adcpwmasynctest_ert_initialize(void)//根据Simulink中设置进行初始化设置()[这里是ADC和ePWM]
{
     
  /* Registration code */

  /* initialize error status */
  rtmSetErrorStatus(c2807x_2837xx_adcpwmasynctes_M, (NULL));   //给_M结构体中的errorStatus指向空(代表未操作过?)

  /* block I/O */
  (void) memset(((void *) &c2807x_2837xx_adcpwmasynctest_B), 0,
                sizeof(B_c2807x_2837xx_adcpwmasyncte_T));       //给_B结构体赋值为0

  /* Start for S-Function (c28xisr_c2000): '/C28x Hardware Interrupt' incorporates:
   *  SubSystem: '/ADC-PWM Subsystem'
   */

  /* Start for function-call system: '/ADC-PWM Subsystem' */

  /* Start for S-Function (c2802xadc): '/ADC' */
  if (MW_adcAInitFlag == 0) {
     
    InitAdcA();                                              //ADCA、12位、单端
    MW_adcAInitFlag = 1;
  }                                                          //利用标志控制ADC只初始化一次

  config_ADCA_SOC0 ();                                       //SOC0-ADCIN0、epwm1(soca)触发
    														//EOC0触发ADCINT1(不触发SOC0)、转换完成后产生中断

  /* Start for S-Function (c2802xpwm): '/ePWM' */
  EALLOW;
  CpuSysRegs.PCLKCR2.bit.EPWM1 = 1;
  CpuSysRegs.PCLKCR0.bit.TBCLKSYNC = 0;
  EDIS;

  /*** Initialize ePWM1 modules ***/
  {
     
    /*  // Time Base Control Register
       EPwm1Regs.TBCTL.bit.CTRMODE              = 2;          // Counter Mode
       EPwm1Regs.TBCTL.bit.SYNCOSEL             = 3;          // Sync Output Select

       EPwm1Regs.TBCTL.bit.PRDLD                = 0;          // Shadow select
       EPwm1Regs.TBCTL.bit.PHSEN                = 0;          // Phase Load Enable
       EPwm1Regs.TBCTL.bit.PHSDIR               = 0;          // Phase Direction Bit
       EPwm1Regs.TBCTL.bit.HSPCLKDIV            = 0;          // High Speed TBCLK Pre-scaler
       EPwm1Regs.TBCTL.bit.CLKDIV               = 0;          // Time Base Clock Pre-scaler
       EPwm1Regs.TBCTL.bit.SWFSYNC              = 0;          // Software Force Sync Pulse
     */
    EPwm1Regs.TBCTL.all = (EPwm1Regs.TBCTL.all & ~0x3FFF) | 0x32;     //up-down模式、不使能同步信号输出

    /*-- Setup Time-Base (TB) Submodule --*/
    EPwm1Regs.TBPRD = 10000;           // Time Base Period Register

    /* // Time-Base Phase Register
       EPwm1Regs.TBPHS.bit.TBPHS               = 0;          // Phase offset register
     */
    EPwm1Regs.TBPHS.all = (EPwm1Regs.TBPHS.all & ~0xFFFF0000) | 0x0;

    // Time Base Counter Register
    EPwm1Regs.TBCTR = 0x0000;          /* Clear counter*/

    /*-- Setup Counter_Compare (CC) Submodule --*/
    /*	// Counter Compare Control Register
       EPwm1Regs.CMPCTL.bit.SHDWAMODE           = 0;  // Compare A Register Block Operating Mode
       EPwm1Regs.CMPCTL.bit.SHDWBMODE           = 0;  // Compare B Register Block Operating Mode
       EPwm1Regs.CMPCTL.bit.LOADAMODE           = 0;          // Active Compare A Load
       EPwm1Regs.CMPCTL.bit.LOADBMODE           = 0;          // Active Compare B Load
     */
    EPwm1Regs.CMPCTL.all = (EPwm1Regs.CMPCTL.all & ~0x5F) | 0x0; //通过shadow写入

    /* EPwm1Regs.CMPCTL2.bit.SHDWCMODE           = 0;  // Compare C Register Block Operating Mode

       EPwm1Regs.CMPCTL2.bit.SHDWDMODE           = 0;  // Compare D Register Block Operating Mode
     */
    EPwm1Regs.CMPCTL2.all = (EPwm1Regs.CMPCTL2.all & ~0x50) | 0x0;
    EPwm1Regs.CMPA.bit.CMPA = 5000;    // Counter Compare A Register
    EPwm1Regs.CMPB.bit.CMPB = 0;       // Counter Compare B Register
    EPwm1Regs.CMPC = 0;                // Counter Compare C Register
    EPwm1Regs.CMPD = 0;                // Counter Compare D Register

    /*-- Setup Action-Qualifier (AQ) Submodule --*/
    EPwm1Regs.AQCTLA.all = 96;   // Action Qualifier Control Register For Output A  注意是96十进制(0x60)
      							//	=CMPA(up)时置高,=prd(down)时置低
    EPwm1Regs.AQCTLB.all = 0;  // Action Qualifier Control Register For Output B

    /*	// Action Qualifier Software Force Register
       EPwm1Regs.AQSFRC.bit.RLDCSF              = 0;          // Reload from Shadow Options
     */
    EPwm1Regs.AQSFRC.all = (EPwm1Regs.AQSFRC.all & ~0xC0) | 0x0;    //(在等于0时加载)

    /*	// Action Qualifier Continuous S/W Force Register
       EPwm1Regs.AQCSFRC.bit.CSFA               = 0;          // Continuous Software Force on output A
       EPwm1Regs.AQCSFRC.bit.CSFB               = 0;          // Continuous Software Force on output B
     */
    EPwm1Regs.AQCSFRC.all = (EPwm1Regs.AQCSFRC.all & ~0xF) | 0x0;

    /*-- Setup Dead-Band Generator (DB) Submodule --*/
    /*	// Dead-Band Generator Control Register
       EPwm1Regs.DBCTL.bit.OUT_MODE             = 0;          // Dead Band Output Mode Control
       EPwm1Regs.DBCTL.bit.IN_MODE              = 0;          // Dead Band Input Select Mode Control
       EPwm1Regs.DBCTL.bit.POLSEL               = 0;          // Polarity Select Control
       EPwm1Regs.DBCTL.bit.HALFCYCLE            = 0;          // Half Cycle Clocking Enable
     */
    EPwm1Regs.DBCTL.all = (EPwm1Regs.DBCTL.all & ~0x803F) | 0x0;
    EPwm1Regs.DBRED.bit.DBRED = 0;
                         // Dead-Band Generator Rising Edge Delay Count Register
    EPwm1Regs.DBFED.bit.DBFED = 0;
                        // Dead-Band Generator Falling Edge Delay Count Register

    /*-- Setup Event-Trigger (ET) Submodule --*/
    /*	// Event Trigger Selection and Pre-Scale Register
       EPwm1Regs.ETSEL.bit.SOCAEN               = 1;          // Start of Conversion A Enable
       EPwm1Regs.ETSEL.bit.SOCASELCMP = 0;
       EPwm1Regs.ETSEL.bit.SOCASEL              = 2 ;          // Start of Conversion A Select
       EPwm1Regs.ETPS.bit.SOCAPRD               = 1;          // EPWM1SOCA Period Select

       EPwm1Regs.ETSEL.bit.SOCBEN               = 0;          // Start of Conversion B Enable

       EPwm1Regs.ETSEL.bit.SOCBSELCMP = 0;
       EPwm1Regs.ETSEL.bit.SOCBSEL              = 1;          // Start of Conversion A Select
       EPwm1Regs.ETPS.bit.SOCBPRD               = 1;          // EPWM1SOCB Period Select
       EPwm1Regs.ETSEL.bit.INTEN                = 0;          // EPWM1INTn Enable
       EPwm1Regs.ETSEL.bit.INTSELCMP = 0;
       EPwm1Regs.ETSEL.bit.INTSEL              = 1;          // Start of Conversion A Select

       EPwm1Regs.ETPS.bit.INTPRD                = 1;          // EPWM1INTn Period Select
     */
    EPwm1Regs.ETSEL.all = (EPwm1Regs.ETSEL.all & ~0xFF7F) | 0x1A01;
    EPwm1Regs.ETPS.all = (EPwm1Regs.ETPS.all & ~0x3303) | 0x1101;

    /*-- Setup PWM-Chopper (PC) Submodule --*/
    /*	// PWM Chopper Control Register
       EPwm1Regs.PCCTL.bit.CHPEN                = 0;          // PWM chopping enable
       EPwm1Regs.PCCTL.bit.CHPFREQ              = 0;          // Chopping clock frequency
       EPwm1Regs.PCCTL.bit.OSHTWTH              = 0;          // One-shot pulse width
       EPwm1Regs.PCCTL.bit.CHPDUTY              = 0;          // Chopping clock Duty cycle
     */
    EPwm1Regs.PCCTL.all = (EPwm1Regs.PCCTL.all & ~0x7FF) | 0x0;

    /*-- Set up Trip-Zone (TZ) Submodule --*/
    EALLOW;
    EPwm1Regs.TZSEL.all = 0;           // Trip Zone Select Register

    /*	// Trip Zone Control Register
       EPwm1Regs.TZCTL.bit.TZA                  = 3;          // TZ1 to TZ6 Trip Action On EPWM1A
       EPwm1Regs.TZCTL.bit.TZB                  = 3;          // TZ1 to TZ6 Trip Action On EPWM1B
       EPwm1Regs.TZCTL.bit.DCAEVT1              = 3;          // EPWM1A action on DCAEVT1
       EPwm1Regs.TZCTL.bit.DCAEVT2              = 3;          // EPWM1A action on DCAEVT2
       EPwm1Regs.TZCTL.bit.DCBEVT1              = 3;          // EPWM1B action on DCBEVT1
       EPwm1Regs.TZCTL.bit.DCBEVT2              = 3;          // EPWM1B action on DCBEVT2
     */
    EPwm1Regs.TZCTL.all = (EPwm1Regs.TZCTL.all & ~0xFFF) | 0xFFF;

    /*	// Trip Zone Enable Interrupt Register
       EPwm1Regs.TZEINT.bit.OST                 = 0;          // Trip Zones One Shot Int Enable
       EPwm1Regs.TZEINT.bit.CBC                 = 0;          // Trip Zones Cycle By Cycle Int Enable
       EPwm1Regs.TZEINT.bit.DCAEVT1             = 0;          // Digital Compare A Event 1 Int Enable
       EPwm1Regs.TZEINT.bit.DCAEVT2             = 0;          // Digital Compare A Event 2 Int Enable
       EPwm1Regs.TZEINT.bit.DCBEVT1             = 0;          // Digital Compare B Event 1 Int Enable
       EPwm1Regs.TZEINT.bit.DCBEVT2             = 0;          // Digital Compare B Event 2 Int Enable
     */
    EPwm1Regs.TZEINT.all = (EPwm1Regs.TZEINT.all & ~0x7E) | 0x0;

    /*	// Digital Compare A Control Register
       EPwm1Regs.DCACTL.bit.EVT1SYNCE           = 0;          // DCAEVT1 SYNC Enable
       EPwm1Regs.DCACTL.bit.EVT1SOCE            = 1;          // DCAEVT1 SOC Enable
       EPwm1Regs.DCACTL.bit.EVT1FRCSYNCSEL      = 0;          // DCAEVT1 Force Sync Signal
       EPwm1Regs.DCACTL.bit.EVT1SRCSEL          = 0;          // DCAEVT1 Source Signal
       EPwm1Regs.DCACTL.bit.EVT2FRCSYNCSEL      = 0;          // DCAEVT2 Force Sync Signal
       EPwm1Regs.DCACTL.bit.EVT2SRCSEL          = 0;          // DCAEVT2 Source Signal
     */
    EPwm1Regs.DCACTL.all = (EPwm1Regs.DCACTL.all & ~0x30F) | 0x4;

    /*	// Digital Compare B Control Register
       EPwm1Regs.DCBCTL.bit.EVT1SYNCE           = 0;          // DCBEVT1 SYNC Enable
       EPwm1Regs.DCBCTL.bit.EVT1SOCE            = 0;          // DCBEVT1 SOC Enable
       EPwm1Regs.DCBCTL.bit.EVT1FRCSYNCSEL      = 0;          // DCBEVT1 Force Sync Signal
       EPwm1Regs.DCBCTL.bit.EVT1SRCSEL          = 0;          // DCBEVT1 Source Signal
       EPwm1Regs.DCBCTL.bit.EVT2FRCSYNCSEL      = 0;          // DCBEVT2 Force Sync Signal
       EPwm1Regs.DCBCTL.bit.EVT2SRCSEL          = 0;          // DCBEVT2 Source Signal
     */
    EPwm1Regs.DCBCTL.all = (EPwm1Regs.DCBCTL.all & ~0x30F) | 0x0;

    /*	// Digital Compare Trip Select Register
       EPwm1Regs.DCTRIPSEL.bit.DCAHCOMPSEL      = 0;          // Digital Compare A High COMP Input Select

       EPwm1Regs.DCTRIPSEL.bit.DCALCOMPSEL      = 1;          // Digital Compare A Low COMP Input Select
       EPwm1Regs.DCTRIPSEL.bit.DCBHCOMPSEL      = 0;          // Digital Compare B High COMP Input Select
       EPwm1Regs.DCTRIPSEL.bit.DCBLCOMPSEL      = 1;          // Digital Compare B Low COMP Input Select





     */
    EPwm1Regs.DCTRIPSEL.all = (EPwm1Regs.DCTRIPSEL.all & ~ 0xFFFF) | 0x1010;

    /*	// Trip Zone Digital Comparator Select Register
       EPwm1Regs.TZDCSEL.bit.DCAEVT1            = 0;          // Digital Compare Output A Event 1
       EPwm1Regs.TZDCSEL.bit.DCAEVT2            = 0;          // Digital Compare Output A Event 2
       EPwm1Regs.TZDCSEL.bit.DCBEVT1            = 0;          // Digital Compare Output B Event 1
       EPwm1Regs.TZDCSEL.bit.DCBEVT2            = 0;          // Digital Compare Output B Event 2
     */
    EPwm1Regs.TZDCSEL.all = (EPwm1Regs.TZDCSEL.all & ~0xFFF) | 0x0;

    /*	// Digital Compare Filter Control Register
       EPwm1Regs.DCFCTL.bit.BLANKE              = 0;          // Blanking Enable/Disable
       EPwm1Regs.DCFCTL.bit.PULSESEL            = 1;          // Pulse Select for Blanking & Capture Alignment
       EPwm1Regs.DCFCTL.bit.BLANKINV            = 0;          // Blanking Window Inversion
       EPwm1Regs.DCFCTL.bit.SRCSEL              = 0;          // Filter Block Signal Source Select
     */
    EPwm1Regs.DCFCTL.all = (EPwm1Regs.DCFCTL.all & ~0x3F) | 0x10;
    EPwm1Regs.DCFOFFSET = 0;           // Digital Compare Filter Offset Register
    EPwm1Regs.DCFWINDOW = 0;           // Digital Compare Filter Window Register

    /*	// Digital Compare Capture Control Register
       EPwm1Regs.DCCAPCTL.bit.CAPE              = 0;          // Counter Capture Enable
     */
    EPwm1Regs.DCCAPCTL.all = (EPwm1Regs.DCCAPCTL.all & ~0x1) | 0x0;

    /*	// HRPWM Configuration Register
       EPwm1Regs.HRCNFG.bit.SWAPAB              = 0;          // Swap EPWMA and EPWMB Outputs Bit
       EPwm1Regs.HRCNFG.bit.SELOUTB             = 0;          // EPWMB Output Selection Bit
     */
    EPwm1Regs.HRCNFG.all = (EPwm1Regs.HRCNFG.all & ~0xA0) | 0x0;

    /* Update the Link Registers with the link value for all the Compare values and TBPRD */
    /* No error is thrown if the ePWM register exists in the model or not */
    EPwm1Regs.EPWMXLINK.bit.TBPRDLINK = 0;
    EPwm1Regs.EPWMXLINK.bit.CMPALINK = 0;
    EPwm1Regs.EPWMXLINK.bit.CMPBLINK = 0;
    EPwm1Regs.EPWMXLINK.bit.CMPCLINK = 0;
    EPwm1Regs.EPWMXLINK.bit.CMPDLINK = 0;
    EDIS;
      
    EALLOW;
    CpuSysRegs.PCLKCR0.bit.TBCLKSYNC = 1;
    EDIS;
  }

  /* End of Start for S-Function (c28xisr_c2000): '/C28x Hardware Interrupt' */
}
/*接上面的主函数*/
rtmSetErrorStatus(c2807x_2837xx_adcpwmasynctes_M, 0);   //_M结构体中的错误标志赋值为0
c2807x_2837xx_adcpwmasynctest_ert_initialize();            //_M结构体赋值为NULL,_B结构体(只有一个ADC)赋值为0
configureTimer0(modelBaseRate, systemClock);            //开启Timer0中断(中断时长为步长),中断函数:TINT0_isr()
runModel =
   rtmGetErrorStatus(c2807x_2837xx_adcpwmasynctes_M) == (NULL); //检测_M中错误标志是否是NULL
enableTimer0Interrupt();                                //开启Timer0中断
enable_interrupts();							        //开ADC中断,ADC中断函数为ADCA1_INT_isr()
globalInterruptEnable();								//开全局中断
while (runModel)
{
     
  stopRequested = !(
     rtmGetErrorStatus(c2807x_2837xx_adcpwmasynctes_M) == (NULL));     //stopRequested是一个标志,一直检测_M结构																			中的错误标志是否发送了改变
}        

/*Terminate mode*/
c2807x_2837xx_adcpwmasynctest_ert_terminate(); //空函数与设置中的Custom Code可能有关,以后进行测试一下
globalInterruptDisable();                      //关中断
return 0;
}/*主函数完毕*/

   主函数主要是完成了:

  • 1.Timer0初始化为0.4s(求解器的步长)进入一次中断

  • 2.初始化了ADC和ePWM模块(按照Simulink中的有关设置)

  • 3.在主循环中一直在,获取一个标志位stopRequested ,推测可能是一个重要的函数运行/停止的标志

    下面着重看一下两个中断函数:1.**Timer0中断 **[TINT0_isr()](这个中断并不是我们设置的,是系统求解器自动生成的一个中。可能与系统运行密切相关)。2.**ADC中断 **[ADCA1_INT_isr()],这个中断可能是完成我们需要的操作(把ADC采集的结果传送到ePWM的CMPA中,进而改变占空比)。

在这里插入图片描述

  如上图所示,自动生成了以上四个文件,Timer0中断函数就在红框所示文件内。

interrupt void TINT0_isr(void)
{
     	  
      //#define PIEMASK0                       64
     //#define IFRMASK                        1
      #ifdef PIEMASK0          //再MW_c28xx_pie.h文件中进行了相关的声明											 
       volatile unsigned int PIEIER1_stack_save = PieCtrlRegs.PIEIER1.all;//PIE1中1.7是Timer0中断;1.1是ADC中断
      #endif
     /* #ifdef PIEMASK1
        volatile unsigned int PIEIER2_stack_save  = PieCtrlRegs.PIEIER2.all;
      #endif
      #ifdef PIEMASK2
        volatile unsigned int PIEIER3_stack_save  = PieCtrlRegs.PIEIER3.all;
      #endif
      #ifdef PIEMASK3
        volatile unsigned int PIEIER4_stack_save  = PieCtrlRegs.PIEIER4.all;
      #endif
      #ifdef PIEMASK4
        volatile unsigned int PIEIER5_stack_save  = PieCtrlRegs.PIEIER5.all;
      #endif
      #ifdef PIEMASK5
        volatile unsigned int PIEIER6_stack_save  = PieCtrlRegs.PIEIER6.all;
      #endif
      #ifdef PIEMASK6
        volatile unsigned int PIEIER7_stack_save  = PieCtrlRegs.PIEIER7.all;
      #endif
      #ifdef PIEMASK7
        volatile unsigned int PIEIER8_stack_save  = PieCtrlRegs.PIEIER8.all;
      #endif
      #ifdef PIEMASK8
        volatile unsigned int PIEIER9_stack_save  = PieCtrlRegs.PIEIER9.all;
      #endif
      #ifdef PIEMASK9
        volatile unsigned int PIEIER10_stack_save = PieCtrlRegs.PIEIER10.all;
      #endif
      #ifdef PIEMASK10
        volatile unsigned int PIEIER11_stack_save = PieCtrlRegs.PIEIER11.all;
      #endif
      #ifdef PIEMASK11
        volatile unsigned int PIEIER12_stack_save = PieCtrlRegs.PIEIER12.all;
      #endif*/      //这一段并不是注释掉了,表示文件中没有宏定义,目前没有起作用

      #ifdef PIEMASK0
        PieCtrlRegs.PIEIER1.all &= ~PIEMASK0;      /* disable group1 lower/equal priority interrupts */
      #endif
      #ifdef PIEMASK1
        PieCtrlRegs.PIEIER2.all &= ~PIEMASK1;      /* disable group2 lower/equal priority interrupts */
      #endif
      #ifdef PIEMASK2
        PieCtrlRegs.PIEIER3.all &= ~PIEMASK2;      /* disable group3 lower/equal priority interrupts */
      #endif
      #ifdef PIEMASK3
        PieCtrlRegs.PIEIER4.all &= ~PIEMASK3;      /* disable group4 lower/equal priority interrupts */
      #endif
      #ifdef PIEMASK4
        PieCtrlRegs.PIEIER5.all &= ~PIEMASK4;      /* disable group5 lower/equal priority interrupts */
      #endif
      #ifdef PIEMASK5
        PieCtrlRegs.PIEIER6.all &= ~PIEMASK5;      /* disable group6 lower/equal priority interrupts */
      #endif
      #ifdef PIEMASK6
        PieCtrlRegs.PIEIER7.all &= ~PIEMASK6;      /* disable group7 lower/equal priority interrupts */
      #endif
      #ifdef PIEMASK7
        PieCtrlRegs.PIEIER8.all &= ~PIEMASK7;      /* disable group8 lower/equal priority interrupts */
      #endif
      #ifdef PIEMASK8
        PieCtrlRegs.PIEIER9.all &= ~PIEMASK8;      /* disable group9 lower/equal priority interrupts */
      #endif
      #ifdef PIEMASK9
        PieCtrlRegs.PIEIER10.all &= ~PIEMASK9;     /* disable group10 lower/equal priority interrupts */
      #endif
      #ifdef PIEMASK10
        PieCtrlRegs.PIEIER11.all &= ~PIEMASK10;    /* disable group11 lower/equal priority interrupts */
      #endif
      #ifdef PIEMASK11
        PieCtrlRegs.PIEIER12.all &= ~PIEMASK11;    /* disable group12 lower/equal priority interrupts */
      #endif
	  #ifdef PIEMASK12
		IER &= ~(M_INT13);
      #endif
	  #ifdef PIEMASK13
		IER &= ~(M_INT14);
      #endif
	  
      asm(" RPT #5 || NOP");               /* wait 5 cycles */  //等待五个周期
      IFR &= ~IFRMASK;                           /* eventually disable lower/equal priority pending interrupts */
      PieCtrlRegs.PIEACK.all = IFRMASK;          /* ACK to allow other interrupts from the same group to fire */
      IER |= 1;
      EINT;                                /* global interrupt enable */
      rt_OneStep();
      DINT;                                /* disable global interrupts during context switch, CPU will enable global interrupts after exiting ISR */
      #ifdef PIEMASK0
        PieCtrlRegs.PIEIER1.all = PIEIER1_stack_save;/*restore PIEIER register that was modified */
      #endif  
      #ifdef PIEMASK1
        PieCtrlRegs.PIEIER2.all = PIEIER2_stack_save;/*restore PIEIER register that was modified */
      #endif
      #ifdef PIEMASK2
        PieCtrlRegs.PIEIER3.all = PIEIER3_stack_save;/*restore PIEIER register that was modified */
      #endif
      #ifdef PIEMASK3
        PieCtrlRegs.PIEIER4.all = PIEIER4_stack_save;/*restore PIEIER register that was modified */
      #endif
      #ifdef PIEMASK4
        PieCtrlRegs.PIEIER5.all = PIEIER5_stack_save;/*restore PIEIER register that was modified */
      #endif
      #ifdef PIEMASK5
        PieCtrlRegs.PIEIER6.all = PIEIER6_stack_save;/*restore PIEIER register that was modified */
      #endif
      #ifdef PIEMASK6
        PieCtrlRegs.PIEIER7.all = PIEIER7_stack_save;/*restore PIEIER register that was modified */
      #endif
      #ifdef PIEMASK7
        PieCtrlRegs.PIEIER8.all = PIEIER8_stack_save;/*restore PIEIER register that was modified */
      #endif
      #ifdef PIEMASK8
        PieCtrlRegs.PIEIER9.all = PIEIER9_stack_save;/*restore PIEIER register that was modified */
      #endif
      #ifdef PIEMASK9
        PieCtrlRegs.PIEIER10.all= PIEIER10_stack_save;/*restore PIEIER register that was modified */
      #endif
      #ifdef PIEMASK10
        PieCtrlRegs.PIEIER11.all= PIEIER11_stack_save;/*restore PIEIER register that was modified */
      #endif
      #ifdef PIEMASK11
        PieCtrlRegs.PIEIER12.all= PIEIER12_stack_save;/*restore PIEIER register that was modified */
      #endif
	  #ifdef PIEMASK12
		IER |= M_INT13;
      #endif
	  #ifdef PIEMASK13
		IER |= M_INT14;
      #endif
}
  • 1.建立一个堆栈PIEIER1_stack_save保存了PIE1的状态,

然后是这段代码:PieCtrlRegs.PIEIER1.all &= ~PIEMASK0;(PIEMASK0等于64,即:0100 0000)

~PIEMASK0为:1011 1111,与上PIE1之后可以发现,是将1.7(Timer0中断)位进行置零;就是关Timer0中断

  • 2.然后等待5个周期,将IFR最低位置为0,清除INT1的标志位

  • 3.将ACK1置为1,禁止同级中断响应

  • 4.将IER最低位置为1,应答

  • 5.开启全局中断

然后进入函数 **rt_OneStep();**本程序中为空函数。[推测跟步长有关的函数将在此函数里面执行,比如GPIO翻转实验中的内容]

  • 6.DINT,关闭全局中断。将PIE恢复为进入时候的状态,即重新开启Timer0中断。

其实感觉真正自己写的话,不用那么复杂。这里可能是Mathwork为了编写程序模块化写程序,进行了一定的固定设置。

下面看一下ADC中断函数()[ADCA1_INT_isr()]

interrupt void ADCA1_INT_isr(void)
{
     
  isr_int1pie1_task_fcn();
  EALLOW;
  AdcaRegs.ADCINTFLGCLR.bit.ADCINT1 = 1;        //清除ADC的标志位
  EDIS;
  PieCtrlRegs.PIEACK.all = PIEACK_GROUP1;       //应答
                                    
}

主要的函数内容都在**isr_int1pie1_task_fcn()**函数中:

void isr_int1pie1_task_fcn(void)
{
     
  /* Call the system: /ADC-PWM Subsystem */
  {
     
    /* S-Function (c28xisr_c2000): '/C28x Hardware Interrupt' */

    /* Output and update for function-call system: '/ADC-PWM Subsystem' */
    {
     
      /* local block i/o variables */
      uint16_T rtb_Gain;

      /* S-Function (c2802xadc): '/ADC' */
      {
     
        /*  Internal Reference Voltage : Fixed scale 0 to 3.3 V range.  */
        /*  External Reference Voltage : Allowable ranges of VREFHI(ADCINA0) = 3.3 and VREFLO(tied to ground) = 0  */
        c2807x_2837xx_adcpwmasynctest_B.ADC = (AdcaResultRegs.ADCRESULT0); //读取ADC采集结果
      }

      /* Gain: '/Gain' */
      rtb_Gain = (uint16_T)(((uint32_T)c2807x_2837xx_adcpwmasynctest_P.Gain_Gain
        * c2807x_2837xx_adcpwmasynctest_B.ADC) >> 13U);         //40960>>13*(ADC的采样结果)=5*(ADCresult)

      /* S-Function (c2802xpwm): '/ePWM' */

      /*-- Update CMPA value for ePWM1 --*/
      {
     
        EPwm1Regs.CMPA.bit.CMPA = (uint16_T)(rtb_Gain);     //将这个值赋给epwm的CMPA
      }
    }

    /* End of Outputs for S-Function (c28xisr_c2000): '/C28x Hardware Interrupt' */
  }
}

这里有点意思,因为Simulink中这里使用的是一个Function Call模块,可以猜想,里面含有其他的模块,可能也在这一部分。

最后看一下MW生成的这些文件都有哪些功能:

Matlab生成dsp程序——官方例程学习_第2张图片

红框内的都是MW生成的文件,其他的都是库文件。

  • 1.c2807x_2837xx_adcpwmasynctest_ert_data.c,(_data前面都是文件名,所以简记为:data文件),文件中存储了会使用到的一些参数,如这一次的常数5)

  • 2.c2807x_2837xx_adcpwmasynctest_ert.c,这文件里面有ADC中断执行的isr_int1pie1_task_fcn函数。**c2807x_2837xx_adcpwmasynctest_ert_step()**函数,**c2807x_2837xx_adcpwmasynctest_ert_initialize()**函数,**c2807x_2837xx_adcpwmasynctest_ert_terminate()**函数。

    可以看出是与模型相关的一些函数

  • 3.c2837xDBoard_Realtime_Support.c,一些板子的支持函数,通用性的功能函数

  • 4.c2837xDSchedulerTimer0.c,就是跟求解器步长相关的函数,如果加入积分模块很有可能就在这里运算。

  • 5.MW_c28xGPIO.c,存放初始化GPIO和设置相关GPIO的函数

  • 6.MW_c28x_adc.c,存放ADC初始化和配置ADC的函数

  • 7.MW_c28x_board.c,存放初始化时钟和一些配置的相关函数(如外设属于CPU1还是CPU2等等)。

  • 8.MW_c28x_csl.c,存放开启中断,以及中断函数如ADCA1_INT_isr)。

  • 9.MW_c28x_pwm.c,配置开启PWM,需要使用的GPIO

  • 10.profiler_Support.c,感觉与调试相关

下面尝试一下,如果不开启ADC中断,将ADC结果乘5赋值给CMPA将在哪部分完成!

Matlab生成dsp程序——官方例程学习_第3张图片

结果是失败了,目测是跟这个模块关系非常大。

弄明白了,这个是通过CPU中断号和PIE中断号进行服务的中断函数,具体对应关系需要查看帮助文档。

Matlab生成dsp程序——官方例程学习_第4张图片

Matlab生成dsp程序——官方例程学习_第5张图片
Matlab生成dsp程序——官方例程学习_第6张图片

这里给的CPU和PIE号都是1,而且这两个号码还能在模块中配置为向量,看来能够多个中断里面都使用一个函数体。

三、总结

总的来说,整个生成的程序有严格的框架,主要是步长会默认占用一个Timer0的中断,不知道这个能否进行改动。再就是其他的东西都与模型有严格的对照,非常建议第一次学习的时候,将模型和程序进行对照学习,收获会非常非常大的。环境搭建的步骤,我也已经上传了,有需要的可以看我的博文。

你可能感兴趣的:(2837x,嵌入式,代码生成器,MATLAB,Simulink)