pat练习题1001

pat练习题1001

题目

1001 害死人不偿命的(3n+1)猜想 (15 分)
卡拉兹(Callatz)猜想:

对任何一个正整数 n,如果它是偶数,那么把它砍掉一半;如果它是奇数,那么把 (3n+1) 砍掉一半。这样一直反复砍下去,最后一定在某一步得到 n=1。卡拉兹在 1950 年的世界数学家大会上公布了这个猜想,传说当时耶鲁大学师生齐动员,拼命想证明这个貌似很傻很天真的命题,结果闹得学生们无心学业,一心只证 (3n+1),以至于有人说这是一个阴谋,卡拉兹是在蓄意延缓美国数学界教学与科研的进展……

我们今天的题目不是证明卡拉兹猜想,而是对给定的任一不超过 1000 的正整数 n,简单地数一下,需要多少步(砍几下)才能得到 n=1?

输入格式:

每个测试输入包含 1 个测试用例,即给出正整数 n 的值。

输出格式:

输出从 n 计算到 1 需要的步数。

输入样例:

3

输出样例:

5

代码如下:

#include 

using namespace std;

int callatz(int n, int i){
  if(n == 1)
    return i;
  else if(n % 2 == 0)
  {
    i++;
    callatz(n/2, i);
  }
  else
  {
     i++;
     callatz((3*n+1)/2, i);
   }
}

//一个递归调用,用初始i为0来记录走的步数。
int main(){
  int n;
  cin >> n;
  int final = callatz(n,0);
  cout << final << endl;
  
  return 0;
}

你可能感兴趣的:(PAT乙级练习题,pat)