移位运算符
移位运算符就是在二进制的基础上对数字进行平移。按照平移的方向和填充数字的规则分为三种:<<(左移)、>>(带符号右移)和>>>(无符号右移)。
在移位运算时,byte、short和char类型移位后的结果会变成int类型,对于byte、short、char和int进行移位时,规定实际移 动的次数是移动次数和32的余数,也就是移位33次和移位1次得到的结果相同。移动long型的数值时,规定实际移动的次数是移动次数和64的余数,也就 是移动66次和移动2次得到的结果相同。
三种移位运算符的移动规则和使用如下所示:
<<运算规则:按二进制形式把所有的数字向左移动对应的位数,高位移出(舍弃),低位的空位补零。
语法格式:
需要移位的数字 << 移位的次数
例如: 3 << 2,则是将数字3左移2位
计算过程:
3 << 2
首先把3转换为二进制数字0000 0000 0000 0000 0000 0000 0000 0011,然后把该数字高位(左侧)的两个零移出,其他的数字都朝左平移2位,最后在低位(右侧)的两个空位补零。则得到的最终结果是0000 0000 0000 0000 0000 0000 0000 1100,则转换为十进制是12.数学意义:
在数字没有溢出的前提下,对于正数和负数,左移一位都相当于乘以2的1次方,左移n位就相当于乘以2的n次方。
>>运算规则:按二进制形式把所有的数字向右移动对应巍峨位数,低位移出(舍弃),高位的空位补符号位,即正数补零,负数补1.
语法格式:
需要移位的数字 >> 移位的次数
例如11 >> 2,则是将数字11右移2位
计算过程:11的二进制形式为:0000 0000 0000 0000 0000 0000 0000 1011,然后把低位的最后两个数字移出,因为该数字是正数,所以在高位补零。则得到的最终结果是0000 0000 0000 0000 0000 0000 0000 0010.转换为十进制是3.数学意义:右移一位相当于除2,右移n位相当于除以2的n次方。
>>>运算规则:按二进制形式把所有的数字向右移动对应巍峨位数,低位移出(舍弃),高位的空位补零。对于正数来说和带符号右移相同,对于负数来说不同。
其他结构和>>相似。
小结
二进制运算符,包括位运算符和移位运算符,使程序员可以在二进制基础上操作数字,可以更有效的进行运算,并且可以以二进制的形式存储和转换数据,是实现网络协议解析以及加密等算法的基础。
移位运算
要点 1 它们都是双目运算符,两个运算分量都是整形,结果也是整形。
2 "<<" 左移:右边空出的位上补0,左边的位将从字头挤掉,其值相当于乘2。
3 ">>"右移:右边的位被挤掉。对于左边移出的空位,如果是正数则空位补0,若为负数,可能补0或补1,这取决于所用的计算机系统。
4 ">>>"运算符,右边的位被挤掉,对于左边移出的空位一概补上0。
位运算符的应用 (源操作数s 掩码mask)
(1) 按位与-- &
1 清零特定位 (mask中特定位置0,其它位为1,s=s&mask)
2 取某数中指定位 (mask中特定位置1,其它位为0,s=s&mask)
(2) 按位或-- | 常用来将源操作数某些位置1,其它位不变。 (mask中特定位置1,其它位为0 s=s|mask)
(3) 位异或-- ^
1 使特定位的值取反 (mask中特定位置1,其它位为0 s=s^mask)
2 不引入第三变量,交换两个变量的值 (设 a=a1,b=b1)
目 标 操 作 操作后状态
a=a1^b1 a=a^b a=a1^b1,b=b1
b=a1^b1^b1 b=a^b a=a1^b1,b=a1
a=b1^a1^a1 a=a^b a=b1,b=a1
二进制补码运算公式:
-x = ~x + 1 = ~(x-1)
~x = -x-1
-(~x) = x+1
~(-x) = x-1
x+y = x - ~y - 1 = (x|y)+(x&y)
x-y = x + ~y + 1 = (x|~y)-(~x&y)
x^y = (x|y)-(x&y)
x|y = (x&~y)+y
x&y = (~x|y)-~x
x==y: ~(x-y|y-x)
x!=y: x-y|y-x
x< y: (x-y)^((x^y)&((x-y)^x))
x<=y: (x|~y)&((x^y)|~(y-x))
x< y: (~x&y)|((~x|y)&(x-y))//无符号x,y比较
x<=y: (~x|y)&((x^y)|~(y-x))//无符号x,y比较
应用举例
(1) 判断int型变量a是奇数还是偶数
a&1 = 0 偶数
a&1 = 1 奇数
(2) 取int型变量a的第k位 (k=0,1,2……sizeof(int)),即a>>k&1
(3) 将int型变量a的第k位清0,即a=a&~(1< (4) 将int型变量a的第k位置1, 即a=a|(1< (5) int型变量循环左移k次,即a=a< (6) int型变量a循环右移k次,即a=a>>k|a<<16-k (设sizeof(int)=16) (7)整数的平均值 对于两个整数x,y,如果用 (x+y)/2 求平均值,会产生溢出,因为 x+y 可能会大于INT_MAX,但是我们知道它们的平均值是肯定不会溢出的,我们用如下算法: int average(int x, int y) //返回X,Y 的平均值{ return (x&y)+((x^y)>>1); } (8)判断一个整数是不是2的幂,对于一个数 x >= 0,判断他是不是2的幂 boolean power2(int x){ return ((x&(x-1))==0)&&(x!=0); } (9)不用temp交换两个整数 void swap(int x , int y){ x ^= y; y ^= x; x ^= y; } (10)计算绝对值 int abs( int x ){ int y ; y = x >> 31 ; return (x^y)-y ; //or: (x+y)^y } (11)取模运算转化成位运算 (在不产生溢出的情况下) a % (2^n) 等价于 a & (2^n - 1) (12)乘法运算转化成位运算 (在不产生溢出的情况下) a * (2^n) 等价于 a<< n (13)除法运算转化成位运算 (在不产生溢出的情况下) a / (2^n) 等价于 a>> n 例: 12/8 == 12>>3 (14) a % 2 等价于 a & 1 (15) if (x == a) x= b; else x= a; 等价于 x= a ^ b ^ x; (16) x 的 相反数 表示为 (~x+1) Java实例操作: 移位运算符面向的运算对象也是二进制的 “位”。 可单独用它们处理整数类型(主类型的一种)。左移位运算符(<<)能将运算符左边的运算对象向左移动运算符右侧指定的位数(在低位补0)。 “有符号”右移位运算符(>>)则将运算符左边的运算对象向右移动运算符右侧指定的位数。“有符号”右移位运算符使用了“符号扩展”:若值为正,则在高位插入0;若值为负,则在高位插入1。Java也添加了一种“无符号”右移位运算符(>>>),它使用了“零扩展”:无论正负,都在高位插入0。这一运算符是C或C++没有的。 来自:http://blog.csdn.net/w845695652/article/details/6522285 public class URShift {
public static void main(String[] args) {
int i = -1;
i >>>= 10;
//System.out.println(i);
mTest();
}
public static void mTest(){
//左移
int i = 12; //二进制为:0000000000000000000000000001100
i <<= 2; //i左移2位,把高位的两位数字(左侧开始)抛弃,低位的空位补0,二进制码就为0000000000000000000000000110000
System.out.println(i); //二进制110000值为48;
System.out.println("
");
//右移
i >>=2; //i右移2为,把低位的两个数字(右侧开始)抛弃,高位整数补0,负数补1,二进制码就为0000000000000000000000000001100
System.out.println(i); //二进制码为1100值为12
System.out.println("
");
//右移example
int j = 11;//二进制码为00000000000000000000000000001011
j >>= 2; //右移两位,抛弃最后两位,整数补0,二进制码为:00000000000000000000000000000010
System.out.println(j); //二进制码为10值为2
System.out.println("
");
byte k = -2; //转为int,二进制码为:0000000000000000000000000000010
k >>= 2; //右移2位,抛弃最后2位,负数补1,二进制吗为:11000000000000000000000000000
System.out.println(k); //二进制吗为11值为2
}
}
若对char,byte或者short进行移位处理,那么在移位进行之前,它们会自动转换成一个int。只有右侧的5个低位才会用到。这样可防止我们在一个int数里移动不切实际的位数。若对一个long值进行处理,最后得到的结果也 是long。此时只会用到右侧的6个低位,防止移动超过long值里现成的位数。但在进行“无符号”右移位时,也可能遇到一个问题。若对byte或 short值进行右移位运算,得到的可能不是正确的结果(Java 1.0和Java 1.1特别突出)。它们会自动转换成int类型,并进行右移位。但“零扩展”不会发生,所以在那些情况下会得到-1的结果。