- 大模型产品Deepseek(三)、API 调用指南
伯牙碎琴
大模型DeepseekAI大模型
DeepSeekAPI调用指南DeepSeek作为一款高效的智能搜索与推荐引擎,为开发者提供了简洁易用的API接口,使得将其集成到各种应用场景中变得更加高效和便捷。在这一章节中,我们将详细介绍如何通过API调用DeepSeek,包括如何进行身份验证、如何提交请求、如何解析响应以及如何通过代码实现基本的搜索与推荐功能。1.DeepSeekAPI概述DeepSeek作为一款高效的智能搜索与推荐引擎,通
- nacos学习笔记
柠檬编程工作室
SpringCloud微服务java面试经验学习笔记
Nacos(动态服务发现、配置管理与服务管理平台)是阿里巴巴开源的一个分布式系统架构中服务发现和配置管理的基础组件。它的主要目标是提供一个动态服务发现、配置管理和服务管理的解决方案。Nacos主要适用于微服务架构,并在云原生环境下发挥重要作用。Nacos的核心功能服务发现与健康检查Nacos提供了服务发现功能,可以帮助微服务在运行时动态发现其他服务的地址和端口。服务提供者(例如一个微服务实例)将自
- 第N11周:seq2seq翻译实战-Pytorch复现
计算机真好丸
pytorch人工智能python
文章目录一、前期准备1.搭建语言类2.文本处理函数3.文件读取函数二、Seq2Seq模型1.编码器(encoder)2.解码器(decoder)三、训练1.数据预处理2.训练函数3.评估四、评估与训练1.Loss图2.可视化注意力五、总结本文为365天深度学习训练营中的学习记录博客原作者:K同学啊一、前期准备from__future__importunicode_literals,print_fu
- 第N5周:Pytorch文本分类入门
计算机真好丸
pytorch分类人工智能
文章目录一、前期准备1.环境安装2.加载数据3.构建词典4.生成数据批次和迭代器二、准备模型1.定义模型2.定义实例三、训练模型1.拆分数据集并运行模型2.使用测试数据集评估模型本文为365天深度学习训练营中的学习记录博客原作者:K同学啊一、前期准备1.环境安装确保安装了torchtext与portalocker库2.加载数据importtorch#强制使用CPUdevice=torch.devi
- 第TR5周:Transformer实战:文本分类
计算机真好丸
transformer分类深度学习
文章目录1.准备环境1.1环境安装1.2加载数据2.数据预处理2.1构建词典2.2生成数据批次和迭代器2.3构建数据集3.模型构建3.1定义位置编码函数3.2定义Transformer模型3.3初始化模型3.4定义训练函数3.5定义评估函数4.训练模型4.1模型训练5.总结:本文为365天深度学习训练营中的学习记录博客原作者:K同学啊1.准备环境1.1环境安装这是一个使用PyTorch通过Tran
- 非线性动力学笔记C2.1-2.2 一维流动中的不动点和稳定性
阿北Ben
笔记
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录前言C2一维流动(flowonaline)引言2.1几何思考方式2.不动点(fixedpoint)与稳定性(stability)Appendix1前言提示:这里可以添加本文要记录的大概内容:参考书《Nonlineardynamicsandchaos》StevenH.Strogatz本节重点Note第二章内容的引言的1-2小节,
- 知识图谱大模型系列之 11什么是 Neo4j LLM 知识图谱构建器?
知识大胖
NVIDIAGPU和大语言模型开发教程知识图谱neo4j人工智能llm
简介LLM知识图谱构建器是Neo4j的GraphRAG生态系统工具之一,可让您将非结构化数据转换为动态知识图谱。它与检索增强生成(RAG)聊天机器人集成,可实现自然语言查询和对数据的可解释洞察。推荐文章《使用ChatGPT从视频脚本创建知识图谱,使用GPT-4作为领域专家来帮助您从视频转录中提取知识(教程含完整源码)》权重2,知识图谱类《赋能知识图谱形成:利用BERTopic、DataMapPlo
- AI大模型的技术突破与传媒行业变革
AIQL
行业分析人工智能传媒
性能与成本:AI大模型的“双轮驱动”过去几年,AI大模型的发展经历了从实验室到产业化的关键转折。2025年初,以DeepSeekR1为代表的模型在数学推理、代码生成等任务中表现超越国际头部产品,而训练成本仅为传统模型的几十分之一。这一突破的核心在于三大技术创新:MoE架构升级:通过部署256个细粒度专家网络,减少知识冗余,提升模型效率;MLA注意力机制:动态压缩推理过程中的缓存需求,降低GPU内存
- Java程序性能优化读书笔记(一):Java性能调优概述
anxunnian1498
java数据库操作系统
程序性能的主要表现点:执行速度:程序的反映是否迅速,响应时间是否足够短内存分配:内存分配是否合理,是否过多地消耗内存或者存在内存泄漏启动时间:程序从运行到可以正常处理业务需要花费多少时间负载承受能力:当系统压力上升时,系统的执行速度、响应时间的上升曲线是否平缓衡量程序性能的主要指标:执行时间:程序从运行到结束所使用的时间CPU时间:函数或者线程占用CPU的时间内存分配:程序在运行时占用内容的空间磁
- 工控网络安全学习路线
206333308
安全
一、基础技能编程语言:从汇编语言开始学习,了解底层机器指令和内存管理等基础知识。接着学习C/C++,掌握面向过程和面向对象编程的基本概念和技术,为后续的漏洞挖掘和底层分析打下基础。最后学习Python,它在安全领域应用广泛,可用于自动化脚本编写、漏洞扫描和数据分析等。《计算机网络原理》:掌握网络通信的基本原理,包括OSI七层模型、TCP/IP协议栈、IP地址分配、子网掩码等。了解网络拓扑结构、路由
- 大数据知识图谱之深度学习——基于BERT+LSTM+CRF深度学习识别模型医疗知识图谱问答可视化系统_bert+lstm
2301_76348014
程序员深度学习大数据知识图谱
文章目录大数据知识图谱之深度学习——基于BERT+LSTM+CRF深度学习识别模型医疗知识图谱问答可视化系统一、项目概述二、系统实现基本流程三、项目工具所用的版本号四、所需要软件的安装和使用五、开发技术简介Django技术介绍Neo4j数据库Bootstrap4框架Echarts简介NavicatPremium15简介Layui简介Python语言介绍MySQL数据库深度学习六、核心理论贪心算法A
- 【K8S系列】Kubernetes 集群中的网络常见面试题
颜淡慕潇
K8S系列深入解析K8S网络kubernetes云原生集群网络
在Kubernetes面试中,网络是一个重要的主题。理解Kubernetes网络模型、服务发现、网络策略等概念对候选人来说至关重要。以下是一些常见的Kubernetes网络面试题及其答案,帮助你准备面试。1.Kubernetes的网络模型是什么样的?问题:Kubernetes的网络模型是怎样的?答案:Kubernetes网络模型遵循“每个Pod都有一个唯一的IP地址”的原则。每个Pod都可以直接通
- DeepSeek进阶开发与应用1:DeepSeek框架概述与基础应用
Evaporator Core
#DeepSeek快速入门DeepSeek进阶开发与应用spring自然语言处理
引言在当今的人工智能领域,深度学习技术已经成为了推动技术进步的核心动力之一。DeepSeek作为一个先进的深度学习框架,旨在为开发者和研究人员提供一个高效、灵活且易于扩展的平台,以便于他们能够快速地实现和部署各种深度学习模型。本文将深入探讨DeepSeek框架的核心架构、基础应用以及如何通过代码实现一个简单的深度学习模型。DeepSeek框架概述DeepSeek框架的设计理念是简洁而强大。它提供了
- 直肠癌远处转移预测模型临床影响力研究Protocol
医学AppMatrix
预测模型构建和评价人工智能大数据机器学习
直肠癌远处转移预测模型临床影响力研究Protocol举例说明AI工具,包括LLM模型和临床预测模型,的临床影响力研究的流程,这是AI工具进入临床实践之前必要的评估流程,如果AI工具与现有的临床工具相比,有正面的临床影响力,即可以使患者收益或者提高效率、节约资源,才可以进入临床实践。需要说明的是,AI工具的临床影响力也可能是负面的,所以临床影响力研究的初期,需要小规模的研究以确定AI工具不是有害的。
- 【Jvascript 算法】-- JavaScript实现对树结构数据的增删以及树型数据与数组的相互转换
野生松
在日常开发中我们经常会碰到树结构数据,以下是我的笔记:constarr=[{id:2,name:'部门B',parentId:0},{id:3,name:'部门C',parentId:1},{id:1,name:'部门A',parentId:2},{id:4,name:'部门D',parentId:1},{id:5,name:'部门E',parentId:2},{id:6,name:'部门F',p
- WPF学习笔记
蒋劲豪
WPFwpf学习笔记C#
容器控件:GridstackPanelWrapPanelDockPanelUniformGridGrid:Grid.RowDefinitionsRowDefinitionGrid.ColumnDefinitionsColumnDefinition第一行的高度是第二行的2倍100auto占2列的空间stackPanel:一般用来修饰部分容器,一般是垂直居中的水平水平排列WrapPanel:默认是贴着
- hunyuan-DiT模型部署指南
算家云
模型构建ComfyUI图片生成大模型人工智能pytorchAIGC
一、介绍Hunyuan-DiT是由腾讯混元推出的扩散模型,支持中文和英文双语输入,其他开源模型相比,Hunyuan-DiT在中文到图像生成方面树立了新的水平。二、部署流程环境要求:所需的最小GPU内存为11GB,建议使用具有32GB内存的GPU,以获得更好的生成质量。1.部署ComfyUI本篇的模型部署是在ComfyUI的基础上进行,如果没有部署过ComfyUI,请按照下面流程先进行部署,如已安装
- 深度剖析DeepSeek本地部署:技术、实践与优化策略
Abossss
AI论文pythonai人工智能
一、引言1.1研究背景与意义近年来,人工智能技术以迅猛之势蓬勃发展,成为推动各行业变革的核心力量。其中,大语言模型(LLMs)作为人工智能领域的关键技术,在自然语言处理、智能客服、内容创作等众多领域展现出了强大的应用潜力,引发了学术界和产业界的广泛关注。OpenAI的GPT系列模型凭借其出色的语言理解与生成能力,在全球范围内掀起了AI应用的热潮;Google的BERT模型则在自然语言理解任务中取得
- DeepSeek+WPS/Office手把手教你玩转智能办公
herosunly
DeepSeek从入门到精通deepseek大模型人工智能officewps智能办公
大家好,我是herosunly。985院校硕士毕业,现担任算法研究员一职,热衷于大模型算法的研究与应用。曾担任百度千帆大模型比赛、BPAA算法Q大赛评委,编写微软OpenAI考试认证指导手册。曾获得阿里云天池比赛第一名,CCF比赛第二名,科大讯飞比赛第名。授权多项发明专利。对机器学习和深度学习拥有自己独到的见解。曾经辅导过若干个非计算机专业的学生进入到算法行业就业。希望和大家一起成长进步。
- 使用Python实现深度学习模型:知识蒸馏与模型压缩
Echo_Wish
Python笔记从零开始学Python人工智能Python算法python深度学习开发语言
在深度学习领域,模型的大小和计算复杂度常常是一个挑战。知识蒸馏(KnowledgeDistillation)和模型压缩(ModelCompression)是两种有效的技术,可以在保持模型性能的同时减少模型的大小和计算需求。本文将详细介绍如何使用Python实现这两种技术。目录引言知识蒸馏概述模型压缩概述实现步骤数据准备教师模型训练学生模型训练(知识蒸馏)模型压缩代码实现结论1.引言在实际应用中,深
- 3.2025年个人心仪笔记本
growhuan
从选购笔记本开始写起笔记本电脑
3.2025年个人心仪笔记本本篇文章主要分享一下2025年个人向心仪的几款笔记本,仅供参考。笔记本决赛名单经过在各大平台疯狂搜索了解各种信息后,结合个人审美以及预算整理出几个最后的决赛选手。如下:ThinkBook14:优点:定位轻薄本、14英寸版本、性能外观都不错,支持后续扩展内存硬盘空间,一线品牌,售后容易。缺点:功耗太低,性能释放感觉不够。对比14+并没有便宜多少。价格:酷睿:U5-125H
- 深度学习框架探秘|TensorFlow vs PyTorch:AI 框架的巅峰对决
紫雾凌寒
智启前沿:AI洞察・创未来人工智能深度学习tensorflowpytorchai
在深度学习框架中,TensorFlow和PyTorch无疑是两大明星框架。前面两篇文章我们分别介绍了TensorFlow(点击查看)和PyTorch(点击查看)。它们引领着AI开发的潮流,吸引着无数开发者投身其中。但这两大框架究竟谁更胜一筹?是TensorFlow的全面与稳健,还是PyTorch的灵活与便捷?让我们一同深入剖析,探寻答案。在深度学习框架中,TensorFlow和PyTorch无疑是
- Apache ZooKeeper 分布式协调服务
slovess
分布式apachezookeeper
1.ZooKeeper概述1.1定义与定位核心定位:分布式系统的协调服务,提供强一致性的配置管理、命名服务、分布式锁和集群管理能力核心模型:基于树形节点(ZNode)的键值存储,支持Watcher监听机制生态地位:Hadoop/Kafka等生态核心依赖,分布式系统基础设施级组件1.2设计目标强一致性:所有节点数据最终一致(基于ZAB协议)高可用性:集群半数以上节点存活即可提供服务顺序性:全局唯一递
- 基于遗传算法求解带有时间窗、车载容量限制、多车辆、单配送中心路径优化VRPTW(多约束)matlab代码
天天Matlab科研工作室
智能优化算法matlab仿真无人机matlab仿真电子资源matlab算法自动驾驶
1数学模型(1)有关模型的说明和假设1)模型中的已知量有:各需求点的位置坐标、各需求点的物料需求数量,各需求点的物料的到达时间要求,配送中心到各需求点的最短行驶距离,各需求点互相之间的最短运输距离。2)现场调查发现,需要配送的物料是可以混装在同一物料架上的,且各需求点需要的物料数量小于物料仓库的库存量。3)忽略在配送过程中车辆遇到的拥挤排队等不利于生产进行的外界因素,也就是说整个装配车间正常运行。
- [008] [RT-Thread学习笔记] 求结构体首地址rt_list_entry函数与字节对齐RT_ALIGN宏
柯西的彷徨
RT-Threadlist数据结构rtos
RT-Thread学习笔记rt_list_entry函数源码分析应用示例RT_ALIGN宏源码分析应用示例RT-Thread版本:4.0.5MCU型号:STM32F103RCT6(ARMCortex-M3内核)1rt_list_entry函数rt_list_entry函数的作用是根据已知成员的地址,算出其结构体的首地址。函数定义如下(在rtservice.h中):1.1源码分析#definert_
- Flink SQL 优化实战 - 维表 JOIN 优化
腾讯云大数据
大数据数据库flinksql
作者:龙逸尘,腾讯CSIG高级工程师背景介绍维表(DimensionTable)是来自数仓建模的概念。在数仓模型中,事实表(FactTable)是指存储有事实记录的表,如系统日志、销售记录等,而维表是与事实表相对应的一种表,它保存了事实表中指定属性的相关详细信息,可以跟事实表做关联;相当于将事实表上经常重复出现的属性抽取、规范出来用一张表进行管理。在实际生产中,我们经常会有这样的需求,以原始数据流
- Ollama容器+打造DeepSeek-R1-7B大模型
码哝小鱼
AI大模型docker运维语言模型
1、获取Ollama官方镜像1.1在线拉取镜像#dokcerpullollama/ollama:0.5.71.2导入离线镜像#tar-zxfollama0.5.7_x86.tar.gz#dokcerload-iollama0.5.7.tar2、执行以下命令创建与启动ollama#dockerrun-dp8880:11434--nameollama\-eOLLAMA_HOST=0.0.0.0:114
- DeepSeek R1 与 OpenAI O1:机器学习模型的巅峰对决
学无止尽5
机器学习人工智能
我的个人主页我的专栏:人工智能领域、java-数据结构、Javase、C语言,希望能帮助到大家!!!点赞收藏❤一、引言在机器学习的广袤天地中,大型语言模型(LLM)无疑是最为璀璨的明珠。它们凭借卓越的语言理解与生成能力,正以前所未有的方式重塑着我们与信息交互的模式。DeepSeekR1和OpenAIO1作为其中的佼佼者,代表了当前技术的前沿水准,在架构设计、训练方法、性能表现以及应用场景等诸多层面
- qt UI架构之MVD
yaofei2006
ui架构
在Qt中,MVD(Model-View-Delegate)是一种用于分离数据、显示和用户交互的设计架构。它是MVC(Model-View-Controller)的变体,特别适合用于处理复杂的数据显示和编辑场景(如表格、列表、树形结构等)。1.MVD架构的核心组件MVD架构由以下三个核心组件组成:1.1Model(模型)负责管理数据。提供数据的访问接口(如data()和setData())。通知视图
- 06 Django-orm-多表操作
lzplum619
DjangoLinux相关djangopython
一创建模型实例:我们来假定下面这些概念,字段和关系作者模型:一个作者有姓名和年龄。作者详细模型:把作者的详情放到详情表,包含生日,手机号,家庭住址等信息。作者详情模型和作者模型之间是一对一的关系(one-to-one)出版商模型:出版商有名称,所在城市以及email。书籍模型:书籍有书名和出版日期,一本书可能会有多个作者,一个作者也可以写多本书,所以作者和书籍的关系就是多对多的关联关系(many-
- 如何用ruby来写hadoop的mapreduce并生成jar包
wudixiaotie
mapreduce
ruby来写hadoop的mapreduce,我用的方法是rubydoop。怎么配置环境呢:
1.安装rvm:
不说了 网上有
2.安装ruby:
由于我以前是做ruby的,所以习惯性的先安装了ruby,起码调试起来比jruby快多了。
3.安装jruby:
rvm install jruby然后等待安
- java编程思想 -- 访问控制权限
百合不是茶
java访问控制权限单例模式
访问权限是java中一个比较中要的知识点,它规定者什么方法可以访问,什么不可以访问
一:包访问权限;
自定义包:
package com.wj.control;
//包
public class Demo {
//定义一个无参的方法
public void DemoPackage(){
System.out.println("调用
- [生物与医学]请审慎食用小龙虾
comsci
生物
现在的餐馆里面出售的小龙虾,有一些是在野外捕捉的,这些小龙虾身体里面可能带有某些病毒和细菌,人食用以后可能会导致一些疾病,严重的甚至会死亡.....
所以,参加聚餐的时候,最好不要点小龙虾...就吃养殖的猪肉,牛肉,羊肉和鱼,等动物蛋白质
- org.apache.jasper.JasperException: Unable to compile class for JSP:
商人shang
maven2.2jdk1.8
环境: jdk1.8 maven tomcat7-maven-plugin 2.0
原因: tomcat7-maven-plugin 2.0 不知吃 jdk 1.8,换成 tomcat7-maven-plugin 2.2就行,即
<plugin>
- 你的垃圾你处理掉了吗?GC
oloz
GC
前序:本人菜鸟,此文研究学习来自网络,各位牛牛多指教
1.垃圾收集算法的核心思想
Java语言建立了垃圾收集机制,用以跟踪正在使用的对象和发现并回收不再使用(引用)的对象。该机制可以有效防范动态内存分配中可能发生的两个危险:因内存垃圾过多而引发的内存耗尽,以及不恰当的内存释放所造成的内存非法引用。
垃圾收集算法的核心思想是:对虚拟机可用内存空间,即堆空间中的对象进行识别
- shiro 和 SESSSION
杨白白
shiro
shiro 在web项目里默认使用的是web容器提供的session,也就是说shiro使用的session是web容器产生的,并不是自己产生的,在用于非web环境时可用其他来源代替。在web工程启动的时候它就和容器绑定在了一起,这是通过web.xml里面的shiroFilter实现的。通过session.getSession()方法会在浏览器cokkice产生JESSIONID,当关闭浏览器,此
- 移动互联网终端 淘宝客如何实现盈利
小桔子
移動客戶端淘客淘寶App
2012年淘宝联盟平台为站长和淘宝客带来的分成收入突破30亿元,同比增长100%。而来自移动端的分成达1亿元,其中美丽说、蘑菇街、果库、口袋购物等App运营商分成近5000万元。 可以看出,虽然目前阶段PC端对于淘客而言仍旧是盈利的大头,但移动端已经呈现出爆发之势。而且这个势头将随着智能终端(手机,平板)的加速普及而更加迅猛
- wordpress小工具制作
aichenglong
wordpress小工具
wordpress 使用侧边栏的小工具,很方便调整页面结构
小工具的制作过程
1 在自己的主题文件中新建一个文件夹(如widget),在文件夹中创建一个php(AWP_posts-category.php)
小工具是一个类,想侧边栏一样,还得使用代码注册,他才可以再后台使用,基本的代码一层不变
<?php
class AWP_Post_Category extends WP_Wi
- JS微信分享
AILIKES
js
// 所有功能必须包含在 WeixinApi.ready 中进行
WeixinApi.ready(function(Api) {
// 微信分享的数据
var wxData = {
&nb
- 封装探讨
百合不是茶
JAVA面向对象 封装
//封装 属性 方法 将某些东西包装在一起,通过创建对象或使用静态的方法来调用,称为封装;封装其实就是有选择性地公开或隐藏某些信息,它解决了数据的安全性问题,增加代码的可读性和可维护性
在 Aname类中申明三个属性,将其封装在一个类中:通过对象来调用
例如 1:
//属性 将其设为私有
姓名 name 可以公开
- jquery radio/checkbox change事件不能触发的问题
bijian1013
JavaScriptjquery
我想让radio来控制当前我选择的是机动车还是特种车,如下所示:
<html>
<head>
<script src="http://ajax.googleapis.com/ajax/libs/jquery/1.7.1/jquery.min.js" type="text/javascript"><
- AngularJS中安全性措施
bijian1013
JavaScriptAngularJS安全性XSRFJSON漏洞
在使用web应用中,安全性是应该首要考虑的一个问题。AngularJS提供了一些辅助机制,用来防护来自两个常见攻击方向的网络攻击。
一.JSON漏洞
当使用一个GET请求获取JSON数组信息的时候(尤其是当这一信息非常敏感,
- [Maven学习笔记九]Maven发布web项目
bit1129
maven
基于Maven的web项目的标准项目结构
user-project
user-core
user-service
user-web
src
- 【Hive七】Hive用户自定义聚合函数(UDAF)
bit1129
hive
用户自定义聚合函数,用户提供的多个入参通过聚合计算(求和、求最大值、求最小值)得到一个聚合计算结果的函数。
问题:UDF也可以提供输入多个参数然后输出一个结果的运算,比如加法运算add(3,5),add这个UDF需要实现UDF的evaluate方法,那么UDF和UDAF的实质分别究竟是什么?
Double evaluate(Double a, Double b)
- 通过 nginx-lua 给 Nginx 增加 OAuth 支持
ronin47
前言:我们使用Nginx的Lua中间件建立了OAuth2认证和授权层。如果你也有此打算,阅读下面的文档,实现自动化并获得收益。SeatGeek 在过去几年中取得了发展,我们已经积累了不少针对各种任务的不同管理接口。我们通常为新的展示需求创建新模块,比如我们自己的博客、图表等。我们还定期开发内部工具来处理诸如部署、可视化操作及事件处理等事务。在处理这些事务中,我们使用了几个不同的接口来认证:
&n
- 利用tomcat-redis-session-manager做session同步时自定义类对象属性保存不上的解决方法
bsr1983
session
在利用tomcat-redis-session-manager做session同步时,遇到了在session保存一个自定义对象时,修改该对象中的某个属性,session未进行序列化,属性没有被存储到redis中。 在 tomcat-redis-session-manager的github上有如下说明: Session Change Tracking
As noted in the &qu
- 《代码大全》表驱动法-Table Driven Approach-1
bylijinnan
java算法
关于Table Driven Approach的一篇非常好的文章:
http://www.codeproject.com/Articles/42732/Table-driven-Approach
package com.ljn.base;
import java.util.Random;
public class TableDriven {
public
- Sybase封锁原理
chicony
Sybase
昨天在操作Sybase IQ12.7时意外操作造成了数据库表锁定,不能删除被锁定表数据也不能往其中写入数据。由于着急往该表抽入数据,因此立马着手解决该表的解锁问题。 无奈此前没有接触过Sybase IQ12.7这套数据库产品,加之当时已属于下班时间无法求助于支持人员支持,因此只有借助搜索引擎强大的
- java异常处理机制
CrazyMizzz
java
java异常关键字有以下几个,分别为 try catch final throw throws
他们的定义分别为
try: Opening exception-handling statement.
catch: Captures the exception.
finally: Runs its code before terminating
- hive 数据插入DML语法汇总
daizj
hiveDML数据插入
Hive的数据插入DML语法汇总1、Loading files into tables语法:1) LOAD DATA [LOCAL] INPATH 'filepath' [OVERWRITE] INTO TABLE tablename [PARTITION (partcol1=val1, partcol2=val2 ...)]解释:1)、上面命令执行环境为hive客户端环境下: hive>l
- 工厂设计模式
dcj3sjt126com
设计模式
使用设计模式是促进最佳实践和良好设计的好办法。设计模式可以提供针对常见的编程问题的灵活的解决方案。 工厂模式
工厂模式(Factory)允许你在代码执行时实例化对象。它之所以被称为工厂模式是因为它负责“生产”对象。工厂方法的参数是你要生成的对象对应的类名称。
Example #1 调用工厂方法(带参数)
<?phpclass Example{
- mysql字符串查找函数
dcj3sjt126com
mysql
FIND_IN_SET(str,strlist)
假如字符串str 在由N 子链组成的字符串列表strlist 中,则返回值的范围在1到 N 之间。一个字符串列表就是一个由一些被‘,’符号分开的自链组成的字符串。如果第一个参数是一个常数字符串,而第二个是type SET列,则 FIND_IN_SET() 函数被优化,使用比特计算。如果str不在strlist 或st
- jvm内存管理
easterfly
jvm
一、JVM堆内存的划分
分为年轻代和年老代。年轻代又分为三部分:一个eden,两个survivor。
工作过程是这样的:e区空间满了后,执行minor gc,存活下来的对象放入s0, 对s0仍会进行minor gc,存活下来的的对象放入s1中,对s1同样执行minor gc,依旧存活的对象就放入年老代中;
年老代满了之后会执行major gc,这个是stop the word模式,执行
- CentOS-6.3安装配置JDK-8
gengzg
centos
JAVA_HOME=/usr/java/jdk1.8.0_45
JRE_HOME=/usr/java/jdk1.8.0_45/jre
PATH=$PATH:$JAVA_HOME/bin:$JRE_HOME/bin
CLASSPATH=.:$JAVA_HOME/lib/dt.jar:$JAVA_HOME/lib/tools.jar:$JRE_HOME/lib
export JAVA_HOME
- 【转】关于web路径的获取方法
huangyc1210
Web路径
假定你的web application 名称为news,你在浏览器中输入请求路径: http://localhost:8080/news/main/list.jsp 则执行下面向行代码后打印出如下结果: 1、 System.out.println(request.getContextPath()); //可返回站点的根路径。也就是项
- php里获取第一个中文首字母并排序
远去的渡口
数据结构PHP
很久没来更新博客了,还是觉得工作需要多总结的好。今天来更新一个自己认为比较有成就的问题吧。 最近在做储值结算,需求里结算首页需要按门店的首字母A-Z排序。我的数据结构原本是这样的:
Array
(
[0] => Array
(
[sid] => 2885842
[recetcstoredpay] =&g
- java内部类
hm4123660
java内部类匿名内部类成员内部类方法内部类
在Java中,可以将一个类定义在另一个类里面或者一个方法里面,这样的类称为内部类。内部类仍然是一个独立的类,在编译之后内部类会被编译成独立的.class文件,但是前面冠以外部类的类名和$符号。内部类可以间接解决多继承问题,可以使用内部类继承一个类,外部类继承一个类,实现多继承。
&nb
- Caused by: java.lang.IncompatibleClassChangeError: class org.hibernate.cfg.Exten
zhb8015
maven pom.xml关于hibernate的配置和异常信息如下,查了好多资料,问题还是没有解决。只知道是包冲突,就是不知道是哪个包....遇到这个问题的分享下是怎么解决的。。
maven pom:
<dependency>
<groupId>org.hibernate</groupId>
<ar
- Spark 性能相关参数配置详解-任务调度篇
Stark_Summer
sparkcachecpu任务调度yarn
随着Spark的逐渐成熟完善, 越来越多的可配置参数被添加到Spark中来, 本文试图通过阐述这其中部分参数的工作原理和配置思路, 和大家一起探讨一下如何根据实际场合对Spark进行配置优化。
由于篇幅较长,所以在这里分篇组织,如果要看最新完整的网页版内容,可以戳这里:http://spark-config.readthedocs.org/,主要是便
- css3滤镜
wangkeheng
htmlcss
经常看到一些网站的底部有一些灰色的图标,鼠标移入的时候会变亮,开始以为是js操作src或者bg呢,搜索了一下,发现了一个更好的方法:通过css3的滤镜方法。
html代码:
<a href='' class='icon'><img src='utv.jpg' /></a>
css代码:
.icon{-webkit-filter: graysc