SpringBoot 检索篇 - 整合 Elasticsearch7.6.2

前言:

我们的应用经常需要添加检索功能,更或者是大量日志检索分析等,SpringBoot 通过整合 SpringData Elasticdearch 为我们提供了非常便捷的检索功能支持。

Elasticsearch是一个分布式搜索服务,提供Restful API,底层基于Lucene,采用多Shard的方式保证数据安全,并且提供自动Resharding的功能,GitHub等大型的站点也是采用了 Elasticsearch 作为其搜索服务。

Elasticsearch - 参考文档

Elasticsearch Java REST Client - 参考文档

Spring Data Elasticsearch - 参考文档

搭配项目仓库 Web IDE 观看体验更佳
在这里插入图片描述

特别鸣谢:遇见狂神说

一、概述

1.1 与关系型数据库的客观对比

Elasticsearch 是面向文档的,使用 JSON 作为文档的序列化格式。

Elasticsearch(集群)中可以包含多个索引(数据库),每个索引中可以包含多个类型(表),每个类型下又包含多个文档(行),每个文档中又包含多个字段(列)。

与关系型数据库的客观对比如下:

Relational DB Elasticsearch
数据库(database) 索引(indices)
表(tables) 类型(types)(将被弃用)
行(row) 文档(documents)
列(columns) 字段(fields)

1.2 物理设计

Elasticsearch 在后台把每个索引划分为多个分片,每个分片可以在集群中的不同服务器间迁移。

一个运行中的 Elasticsearch 实例称为一个节点,而集群是由一个或者多个拥有相同 cluster.name 配置的节点组成, 它们共同承担数据和负载的压力。

1.3 逻辑设计

一个索引类型中,包含多个文档,比如说文档1、文档2。当索引一篇文档时,可以通过这样的一个顺序找到它:

索引 》类型 》文档id

通过这个组合就能索引到某个具体的文档。(注意id不必是整数,实际上它是个字符串)

  1. 文档

    在 Elasticsearch 中,文档是索引和搜索数据的最小单位。

    文档有几个重要属性:

    • 自我包含:一个文档同时包含字段和对应的值,也就是同时包含 key:value 。
    • 层次性:一个文档中包含自文档。
    • 结构灵活:文档不依赖预先定义的模式。

    尽管可以随意新增或忽略某个字段,但是每个字段的类型非常重要。

  2. 类型

    类型是文档的逻辑容器,就像关系型数据库一样,表格是行的容器。

    类型中对于字段的定义称为映射。

  3. 索引

    索引是映射类型的容器,Elasticsearch 中的索引是一个非常大的文档集合。

    索引存储了映射类型的字段和其它设置,然后它们被存储到了各个分片上。

1.4 工作原理

一个集群至少有一个节点,而一个节点就是一个 Elasticsearch 进程,节点可以有多个默认索引,如果创建索引,那么索引将会有5个分片(primary shard 又称主分片)构成的,每一个主分片会有一个副本(replica shard 又称复制分片)。

SpringBoot 检索篇 - 整合 Elasticsearch7.6.2_第1张图片
上图是一个有3个节点的集群,主分片与对应的复制分片都不回在同一个节点内,这样有利于如果某个节点宕机,数据也不至于丢失。

实际上,一个分片就是一个 Lucene 索引,一个包含倒排索引的文件目录,倒排索引的结构使得 Elasticsearch 在不扫描全部文档的情况下,就能检索文档包含的特定关键字。

1.5 倒排索引

Elasticsearch 使用的是一种称为倒排索引的结构,采用 Lucene 倒排索引作为底层。

这种结构适用于快速的全文搜索,一个索引由文档中所有不重复的列表构成,对于每一个词,都有一个包含它的文档列表。

例如,现在有两个文档,每个文档包含如下内容:

# 文档1包含的内容
Study every day, good good up to forever

# 文档2包含的内容
To forever, study every day, good good up

为了创建倒排索引,首先要将每个文档拆分成独立的词(或称为词条或者tokens),然后创建一个包含所有不重复的词条的排序列表,然后列出每个词条出现在哪个文档。

term doc_1 doc_2
Study
To
every
forever
day
study
good
every
to
up

如果搜索 to forever,只需查看包含每个词条的文档。

term doc_1 doc_2
to
forever
total 2 1

两个文档都匹配,但是第一个文档比第二个文档的匹配程度更高。

如果没有别的条件,这两个包含关键字的文档都将返回。

二、部署&测试

2.1 部署 Elasticsearch

  1. 拉取镜像

    docker pull elasticsearch
    
  2. 创建容器

    其中9200是http访问端口,9300是tcp访问端口。

    docker run -e "discovery.type=single-node" -e ES_JAVA_OPTS="-Xms512m -Xmx512m" -d -p 9200:9200 -p 9300:9300 --name es elasticsearch:7.6.2
    

    启动异常:

    ERROR: [1] bootstrap checks failed
        [1]: max virtual memory areas vm.max_map_count [65530] is too low, increase to at least
    

    解决:

    查看max_map_count:

    cat /proc/sys/vm/max_map_count
    65530
    

    设置max_map_count:

    sysctl -w vm.max_map_count=262144
    
  3. 测试

    访问 http://Server-IP:9200 出现以下页面
    SpringBoot 检索篇 - 整合 Elasticsearch7.6.2_第2张图片

2.2 部署可视化工具 Elasticsearch-head

  1. 拉取镜像

    docker pull mobz/elasticsearch-head:5
    
  2. 创建容器

    docker run -d -p 9100:9100 --name head mobz/elasticsearch-head:5
    
  3. 解决跨域请求问题

    进入 Elasticsearch 容器,修改配置文件elasticsearch.yml
    行末添加以下字段:

    http.cors.enabled: true
    http.cors.allow-origin: "*"
    

    重启服务

  4. 在查看或操作索引数据时,可能还报如下错误:

    {“error”:“Content-Type header [application/x-www-form-urlencoded] is not supported”,“status”:406}

    解决方法:

    • 进入head 容器

    • 安装 vim

    配置国内镜像源:

    mv /etc/apt/sources.list /etc/apt/sources.list.bak
        echo "deb http://mirrors.163.com/debian/ jessie main non-free contrib" >> /etc/apt/sources.list
        echo "deb http://mirrors.163.com/debian/ jessie-proposed-updates main non-free contrib" >>/etc/apt/sources.list
        echo "deb-src http://mirrors.163.com/debian/ jessie main non-free contrib" >>/etc/apt/sources.list
        echo "deb-src http://mirrors.163.com/debian/ jessie-proposed-updates main non-free contrib" >>/etc/apt/sources.list
    

    更新安装源

    apt-get update
    

    安装 vim

    apt-get install vim
    

    • 进入_site目录,修改vendor.js文件

     ① 6886行 contentType: "application/x-www-form-urlencoded"
     改成:contentType: "application/json;charset=UTF-8"
    
     ② 7573行 var inspectData = s.contentType === "application/x-www-form-urlencoded" &&
     改成:var inspectData = s.contentType === "application/json;charset=UTF-8" &&
    
  5. 测试

    访问 http://Server-IP:9200 出现以下页面
    SpringBoot 检索篇 - 整合 Elasticsearch7.6.2_第3张图片

2.3 部署可视化工具 Kibana

  1. 拉取镜像

    docker pull kibana:7.6.2
    
  2. 创建容器

    docker run -d -e ELASTICSEARCH_URL=http://39.105.80.221:9200 -p 5601:5601 --name kibana kibana:7.6.2
    
  3. 修改访问地址&汉化

    进入容器

    修改访问地址:编辑 kibana.yml 将 elasticsearch.hosts 修改为 Elasticsearch 服务地址

    汉化:编辑 kibana.yml 行末添加 i18n.locale: “zh-CN”

  4. 测试

    访问 http://Server-IP:5601 出现以下页面

SpringBoot 检索篇 - 整合 Elasticsearch7.6.2_第4张图片

2.4 安装 IK 分词器

什么是 IK 分词器?

分词:即把一段中文或者英文或分成一个个的关键字,我们在搜索的时候会把输入的信息进行分词,会把数据库或者索引库中的数据进行分词,然后进行一个匹配操作,默认的中文分词是将每一个字看成一个词,但这是不符合实际需求的,所以需要安装中文分词器 IK 来解决这个问题。

IK 提供了两个分词算法:ik_smart 和 ik_max_word ,其中 ik_smart 为最少切片,ik_max_word 为最细粒度切片。

  1. 进入 elasticsearch 容器

  2. 安装 wget

    yum -y install wget
    
  3. 在 plugins 目录下创建 ik 目录

    mkdir ik
    
  4. 进入 ik 目录使用 wget 下载对应版本

    wget https://github.com/medcl/elasticsearch-analysis-ik/releases/download/v7.6.2/elasticsearch-analysis-ik-7.6.2.zip
    
  5. 解压压缩包

    unzip elasticsearch-analysis-ik-7.6.2.zip
    
  6. 删除压缩包

    rm -rf elasticsearch-analysis-ik-7.6.2.zip
    
  7. 验证

    重启 elasticsearch 容器后重新进入容器,在 bin 目录下执行指令:

    elasticsearch-plugin list
    

    显示 ik 即表示安装成功

  8. 测试

    在 Kibana Dev Tools 控制台中输入以下命令

    GET _analyze
    {
           
      "analyzer": "ik_smart",
      "text": "中国共产党"
    }
    
    GET _analyze
    {
           
      "analyzer": "ik_max_word",
      "text": "中国共产党"
    }
    

    分别发送请求会得到不同响应

    {
           
      "tokens" : [
        {
           
          "token" : "中国共产党",
          "start_offset" : 0,
          "end_offset" : 5,
          "type" : "CN_WORD",
          "position" : 0
        }
      ]
    }
    
    {
           
      "tokens" : [
        {
           
          "token" : "中国共产党",
          "start_offset" : 0,
          "end_offset" : 5,
          "type" : "CN_WORD",
          "position" : 0
        },
        {
           
          "token" : "中国",
          "start_offset" : 0,
          "end_offset" : 2,
          "type" : "CN_WORD",
          "position" : 1
        },
        {
           
          "token" : "国共",
          "start_offset" : 1,
          "end_offset" : 3,
          "type" : "CN_WORD",
          "position" : 2
        },
        {
           
          "token" : "共产党",
          "start_offset" : 2,
          "end_offset" : 5,
          "type" : "CN_WORD",
          "position" : 3
        },
        {
           
          "token" : "共产",
          "start_offset" : 2,
          "end_offset" : 4,
          "type" : "CN_WORD",
          "position" : 4
        },
        {
           
          "token" : "党",
          "start_offset" : 4,
          "end_offset" : 5,
          "type" : "CN_CHAR",
          "position" : 5
        }
      ]
    }
    

2.5 添加自定义分词字典

  1. 进入 elasticsearch 容器

  2. 处理中文乱码问题

    编辑 ~/.vimrc 文件,行末添加以下配置:

    set fileencodings=utf-8,ucs-bom,gb18030,gbk,gb2312,cp936
    set termencoding=utf-8
    set encoding=utf-8
    

    保存退出

  3. 进入 IK 插件安装目录

  4. 进入 config 目录

  5. 创建 dic 文件

    touch caixukun.dic
    
  6. 编辑 dic 添加自定义词条

    蔡徐坤
    鸡你太美
    
  7. 编辑 IKAnalyzer.cfg.xml

    <entry key="ext_dict">caixukun.dicentry>
    
  8. 重启 elasticsearch 容器

  9. 测试

    在 Kibana Dev Tools 控制台中输入以下命令:

    GET _analyze
    {
           
      "analyzer": "ik_smart",
      "text": "蔡徐坤鸡你太美"
    }
    

    默认响应数据:

    {
           
      "tokens" : [
        {
           
          "token" : "蔡",
          "start_offset" : 0,
          "end_offset" : 1,
          "type" : "CN_CHAR",
          "position" : 0
        },
        {
           
          "token" : "徐",
          "start_offset" : 1,
          "end_offset" : 2,
          "type" : "CN_CHAR",
          "position" : 1
        },
        {
           
          "token" : "坤",
          "start_offset" : 2,
          "end_offset" : 3,
          "type" : "CN_CHAR",
          "position" : 2
        },
        {
           
          "token" : "鸡",
          "start_offset" : 3,
          "end_offset" : 4,
          "type" : "CN_CHAR",
          "position" : 3
        },
        {
           
          "token" : "你",
          "start_offset" : 4,
          "end_offset" : 5,
          "type" : "CN_CHAR",
          "position" : 4
        },
        {
           
          "token" : "太美",
          "start_offset" : 5,
          "end_offset" : 7,
          "type" : "CN_WORD",
          "position" : 5
        }
      ]
    }
    

    自定义字典添加后响应数据:

    {
           
      "tokens" : [
        {
           
          "token" : "蔡徐坤",
          "start_offset" : 0,
          "end_offset" : 3,
          "type" : "CN_WORD",
          "position" : 0
        },
        {
           
          "token" : "鸡你太美",
          "start_offset" : 3,
          "end_offset" : 7,
          "type" : "CN_WORD",
          "position" : 1
        }
      ]
    }
    

三、Rest 风格说明

一种软件结构风格,而不是标准,只是提供了一组设计原则和约束条件,它主要用于客户端和服务器交互类的软件。

基于这个风格设计的软件可以更简洁,更有层次,更易于实现缓存等机制。

基本 Rest 命令说明:

method utl地址 描述
PUT localhost:9200/索引名称/类型名称/文档id 创建文档(指定文档id)
POST localhost:9200/索引名称/类型名称 创建文档
POST localhost:9200/索引名称/类型名称/文档id/_update 修改文档
DELETE localhost:9200/索引名称/类型名称/文档id 删除文档
GET localhost:9200/索引名称/类型名称/文档id 通过id查询文档
POST localhost:9200/索引名称/类型名称/_serch 查询所有数据

3.1 基础测试

  1. 在 Kibana Dev Tools 控制台中输入以下命令:

    PUT /test1/type1/1
    {
           
      "name": "蔡徐坤",
      "age": 10
    }
    

    • 命令解释:

    PUT:创建命令
    test1:索引
    type1:类型
    1:id
    “name”: “蔡徐坤”:属性
    “age”: 10:属性

  2. 发送请求

    得到响应如下:

    #! Deprecation: [types removal] Specifying types in document index requests is deprecated, use the typeless endpoints instead (/{
           index}/_doc/{
           id}, /{
           index}/_doc, or /{
           index}/_create/{
           id}).
    {
           
      "_index" : "test1",
      "_type" : "type1",
      "_id" : "1",
      "_version" : 1,
      "result" : "created",
      "_shards" : {
           
        "total" : 2,
        "successful" : 1,
        "failed" : 0
      },
      "_seq_no" : 0,
      "_primary_term" : 1
    }
    
  3. 进入 head 查看已创建的索引信息

    SpringBoot 检索篇 - 整合 Elasticsearch7.6.2_第5张图片

3.2 创建索引规则

  1. 在 Kibana Dev Tools 控制台中输入以下命令:

    PUT /test2
    {
           
      "mappings": {
           
        "properties": {
           
          "name": {
           
            "type": "text"
          },
          "age": {
           
            "type": "long"
          },
          "birthday": {
           
            "type": "date"
          }
        }
      }
    }
    
  2. 发送请求

    得到响应如下:

    {
           
      "acknowledged" : true,
      "shards_acknowledged" : true,
      "index" : "test2"
    }
    
  3. 进入 head 查看已创建的索引信息

    SpringBoot 检索篇 - 整合 Elasticsearch7.6.2_第6张图片

3.3 查看默认的信息

如果文档字段没有指定,那么 Elasticsearch 就会自动配置默认字段。

  1. 在 Kibana Dev Tools 控制台中输入以下命令:
PUT /test3/_doc/1
{
     
  "name": "蔡徐坤",
  "age": 10,
  "birthday": "1998-08-02"
}
  1. 发送请求

    得到响应如下:

    {
           
      "_index" : "test3",
      "_type" : "_doc",
      "_id" : "1",
      "_version" : 1,
      "result" : "created",
      "_shards" : {
           
        "total" : 2,
        "successful" : 1,
        "failed" : 0
      },
      "_seq_no" : 0,
      "_primary_term" : 1
    }
    
  2. 控制台中输入以下命令:

    GET test3
    
  3. 发送请求

    得到响应如下:

    {
           
      "test3" : {
           
        "aliases" : {
            },
        "mappings" : {
           
          "properties" : {
           
            "age" : {
           
              "type" : "long"
            },
            "birthday" : {
           
              "type" : "date"
            },
            "name" : {
           
              "type" : "text",
              "fields" : {
           
                "keyword" : {
           
                  "type" : "keyword",
                  "ignore_above" : 256
                }
              }
            }
          }
        },
        "settings" : {
           
          "index" : {
           
            "creation_date" : "1596476421598",
            "number_of_shards" : "1",
            "number_of_replicas" : "1",
            "uuid" : "Rh3Z67EpSPSOUbz1lmgB7g",
            "version" : {
           
              "created" : "7060299"
            },
            "provided_name" : "test3"
          }
        }
      }
    }
    

3.4 修改操作

通过 POST 命令实现修改操作。

  1. 在 Kibana Dev Tools 控制台中输入以下命令:
POST /test3/_doc/1/_update
{
     
  "doc": {
     
    "name": "坤坤"
  }
}
  1. 发送请求

    得到响应如下:

    #! Deprecation: [types removal] Specifying types in document update requests is deprecated, use the endpoint /{
           index}/_update/{
           id} instead.
    {
           
      "_index" : "test3",
      "_type" : "_doc",
      "_id" : "1",
      "_version" : 2, // 更新次数
      "result" : "updated",
      "_shards" : {
           
        "total" : 2,
        "successful" : 1,
        "failed" : 0
      },
      "_seq_no" : 1,
      "_primary_term" : 1
    }
    

    版本号发生变化

3.5 删除操作

通过 DELETE 命令实现删除操作。

  1. 在 Kibana Dev Tools 控制台中输入以下命令:

    DELETE test1
    
  2. 发送请求

    得到响应如下:

    {
           
      "acknowledged" : true
    }
    

3.6 拓展命令

通过 GET _cat 命令可以获得当前 Elasticsearch 集群的许多信息。

  1. 查看集群健康值
GET _cat/health
  1. 查看索引具体信息
GET _cat/indices?v

四、关于文档的基本操作

4.1 添加数据 PUT

  1. 在 Kibana Dev Tools 控制台中输入以下命令:

    PUT /stars/user/1
    {
           
      "name": "蔡徐坤",
      "age": "22",
      "desc": "鸡你太美",
      "tags": ["唱","跳","rap","篮球"]
    }
    
  2. 发送请求

    得到响应如下:

    {
           
      "_index" : "stars",
      "_type" : "user",
      "_id" : "1",
      "_version" : 1,
      "result" : "created",
      "_shards" : {
           
        "total" : 2,
        "successful" : 1,
        "failed" : 0
      },
      "_seq_no" : 0,
      "_primary_term" : 1
    }
    
  3. 添加用户2

    PUT /stars/user/2
    {
           
      "name": "吴亦凡",
      "age": "29",
      "desc": "大碗宽面",
      "tags": ["加拿大","电鳗","说唱","嘻哈"]
    }
    
  4. 添加用户3

    PUT /stars/user/3
    {
           
      "name": "梁非凡",
      "age": "40",
      "desc": "也啦你",
      "tags": ["桌面清理大师","警察","啵嘴"]
    }
    
  5. 进入 head 查看已创建的索引信息

    SpringBoot 检索篇 - 整合 Elasticsearch7.6.2_第7张图片

4.2 查询数据 GET

  1. 简单查询
GET stars/user/1
{
     
  "_index" : "stars",
  "_type" : "user",
  "_id" : "1",
  "_version" : 1,
  "_seq_no" : 0,
  "_primary_term" : 1,
  "found" : true,
  "_source" : {
     
    "name" : "蔡徐坤",
    "age" : "22",
    "desc" : "鸡你太美",
    "tags" : [
      "唱",
      "跳",
      "rap",
      "篮球"
    ]
  }
}
  1. 复杂查询
    包含关键字匹配
GET stars/user/_search?q=name:吴亦凡
  "took" : 64,
  "timed_out" : false,
  "_shards" : {
     
    "total" : 1,
    "successful" : 1,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
     
    "total" : {
     
      "value" : 2,
      "relation" : "eq"
    },
    "max_score" : 2.313365,
    "hits" : [
      {
     
        "_index" : "stars",
        "_type" : "user",
        "_id" : "2",
        "_score" : 2.313365, //匹配度
        "_source" : {
     
          "name" : "吴亦凡",
          "age" : "29",
          "desc" : "大碗宽面",
          "tags" : [
            "加拿大",
            "电鳗",
            "说唱",
            "嘻哈"
          ]
        }
      },
      {
     
        "_index" : "stars",
        "_type" : "user",
        "_id" : "3",
        "_score" : 0.4471386,
        "_source" : {
     
          "name" : "梁非凡",
          "age" : "40",
          "desc" : "吔*啦你",
          "tags" : [
            "桌面清理大师",
            "警察",
            "啵嘴"
          ]
        }
      }
    ]
  }
}

4.3 更新数据 POST

  1. 在 Kibana Dev Tools 控制台中输入以下命令:

    POST /stars/user/1/_update
    {
           
      "doc": {
           
        "name": "坤坤"
      }
    }
    
  2. 发送请求

    得到响应如下:

    {
           
      "_index" : "stars",
      "_type" : "user",
      "_id" : "1",
      "_version" : 2, // 更新次数
      "result" : "updated",
      "_shards" : {
           
        "total" : 2,
        "successful" : 1,
        "failed" : 0
      },
      "_seq_no" : 3,
      "_primary_term" : 1
    }
    

4.4 删除数据 DELETE

五、高级查询操作

5.1 普通查询

  • 请求
    GET stars/user/_search
    {
           
      "query": {
           
        "match": {
           
          "name": "凡" // 关键字
        }
      }
    }
    
  • 响应
    {
           
      "took" : 0,
      "timed_out" : false,
      "_shards" : {
           
        "total" : 1,
        "successful" : 1,
        "skipped" : 0,
        "failed" : 0
      },
      "hits" : {
           
        "total" : {
           
          "value" : 2,
          "relation" : "eq"
        },
        "max_score" : 0.4471386,
        "hits" : [
          {
           
            "_index" : "stars",
            "_type" : "user",
            "_id" : "2",
            "_score" : 0.4471386,
            "_source" : {
           
              "name" : "吴亦凡",
              "age" : "29",
              "desc" : "大碗宽面",
              "tags" : [
                "加拿大",
                "电鳗",
                "说唱",
                "嘻哈"
              ]
            }
          },
          {
           
            "_index" : "stars",
            "_type" : "user",
            "_id" : "3",
            "_score" : 0.4471386,
            "_source" : {
           
              "name" : "梁非凡",
              "age" : "40",
              "desc" : "吔*啦你",
              "tags" : [
                "桌面清理大师",
                "警察",
                "啵嘴"
              ]
            }
          }
        ]
      }
    }
    

5.2 查询结果过滤指定字段

  • 请求
    GET stars/user/_search
    {
           
      "query": {
           
        "match": {
           
          "name": "凡"
        }
      },
      "_source": ["name", "desc"] // 过滤字段
    }
    
  • 响应
    {
           
      "took" : 2,
      "timed_out" : false,
      "_shards" : {
           
        "total" : 1,
        "successful" : 1,
        "skipped" : 0,
        "failed" : 0
      },
      "hits" : {
           
        "total" : {
           
          "value" : 2,
          "relation" : "eq"
        },
        "max_score" : 0.4471386,
        "hits" : [
          {
           
            "_index" : "stars",
            "_type" : "user",
            "_id" : "2",
            "_score" : 0.4471386,
            "_source" : {
           
              "name" : "吴亦凡",
              "desc" : "大碗宽面"
            }
          },
          {
           
            "_index" : "stars",
            "_type" : "user",
            "_id" : "3",
            "_score" : 0.4471386,
            "_source" : {
           
              "name" : "梁非凡",
              "desc" : "吔*啦你"
            }
          }
        ]
      }
    }
    

5.3 查询结果排序

  • 请求
    GET stars/user/_search
    {
           
      "query": {
           
        "match": {
           
          "name": "凡"
        }
      },
      "sort": [
        {
           
          "age.keyword": {
           
            "order": "desc" // 降序
          }
        }
      ]
    }
    
  • 响应
    {
           
      "took" : 1,
      "timed_out" : false,
      "_shards" : {
           
        "total" : 1,
        "successful" : 1,
        "skipped" : 0,
        "failed" : 0
      },
      "hits" : {
           
        "total" : {
           
          "value" : 2,
          "relation" : "eq"
        },
        "max_score" : null,
        "hits" : [
          {
           
            "_index" : "stars",
            "_type" : "user",
            "_id" : "3",
            "_score" : null,
            "_source" : {
           
              "name" : "梁非凡",
              "age" : "40",
              "desc" : "吔*啦你",
              "tags" : [
                "桌面清理大师",
                "警察",
                "啵嘴"
              ]
            },
            "sort" : [
              "40"
            ]
          },
          {
           
            "_index" : "stars",
            "_type" : "user",
            "_id" : "2",
            "_score" : null,
            "_source" : {
           
              "name" : "吴亦凡",
              "age" : "29",
              "desc" : "大碗宽面",
              "tags" : [
                "加拿大",
                "电鳗",
                "说唱",
                "嘻哈"
              ]
            },
            "sort" : [
              "29"
            ]
          }
        ]
      }
    }
    

5.4 查询结果分页

  • 请求
    GET stars/user/_search
    {
           
      "query": {
           
        "match": {
           
          "name": "凡"
        }
      },
      "_source": ["name", "desc"],
      "from": 0, // 开始位置
      "size": 1 // 返回数据数目
    }
    
  • 响应
    {
           
      "took" : 3,
      "timed_out" : false,
      "_shards" : {
           
        "total" : 1,
        "successful" : 1,
        "skipped" : 0,
        "failed" : 0
      },
      "hits" : {
           
        "total" : {
           
          "value" : 2,
          "relation" : "eq"
        },
        "max_score" : 0.4471386,
        "hits" : [
          {
           
            "_index" : "stars",
            "_type" : "user",
            "_id" : "2",
            "_score" : 0.4471386,
            "_source" : {
           
              "name" : "吴亦凡",
              "desc" : "大碗宽面"
            }
          }
        ]
      }
    }
    

5.5 多条件查询

must:相当于关系型数据库 and

  • 请求
    GET stars/user/_search
    {
           
      "query": {
           
        "bool": {
           
          "must": [
            {
           
              "match": {
           
                "name": "吴亦凡"
              }
            },
            {
           
              "match": {
           
                "age": "29"
              }
            }
          ]
        }
      }
    }
    
  • 响应
    {
           
      "took" : 5,
      "timed_out" : false,
      "_shards" : {
           
        "total" : 1,
        "successful" : 1,
        "skipped" : 0,
        "failed" : 0
      },
      "hits" : {
           
        "total" : {
           
          "value" : 1,
          "relation" : "eq"
        },
        "max_score" : 3.2941942,
        "hits" : [
          {
           
            "_index" : "stars",
            "_type" : "user",
            "_id" : "2",
            "_score" : 3.2941942,
            "_source" : {
           
              "name" : "吴亦凡",
              "age" : "29",
              "desc" : "大碗宽面",
              "tags" : [
                "加拿大",
                "电鳗",
                "说唱",
                "嘻哈"
              ]
            }
          }
        ]
      }
    }
    

should:相当于关系型数据库 or

  • 请求
    GET stars/user/_search
    {
           
      "query": {
           
        "bool": {
           
          "should": [
            {
           
              "match": {
           
                "name": "吴亦凡"
              }
            },
            {
           
              "match": {
           
                "age": "29"
              }
            }
          ]
        }
      }
    }
    
  • 响应
    {
           
      "took" : 1,
      "timed_out" : false,
      "_shards" : {
           
        "total" : 1,
        "successful" : 1,
        "skipped" : 0,
        "failed" : 0
      },
      "hits" : {
           
        "total" : {
           
          "value" : 2,
          "relation" : "eq"
        },
        "max_score" : 3.2941942,
        "hits" : [
          {
           
            "_index" : "stars",
            "_type" : "user",
            "_id" : "2",
            "_score" : 3.2941942,
            "_source" : {
           
              "name" : "吴亦凡",
              "age" : "29",
              "desc" : "大碗宽面",
              "tags" : [
                "加拿大",
                "电鳗",
                "说唱",
                "嘻哈"
              ]
            }
          },
          {
           
            "_index" : "stars",
            "_type" : "user",
            "_id" : "3",
            "_score" : 0.4471386,
            "_source" : {
           
              "name" : "梁非凡",
              "age" : "40",
              "desc" : "吔*啦你",
              "tags" : [
                "桌面清理大师",
                "警察",
                "啵嘴"
              ]
            }
          }
        ]
      }
    }
    

must_not:相当于关系型数据库 not

  • 请求
    GET stars/user/_search
    {
           
      "query": {
           
        "bool": {
           
          "must_not": [
            {
           
              "match": {
           
                "age": "29"
              }
            }
          ]
        }
      }
    }
    
  • 响应
    {
           
      "took" : 2,
      "timed_out" : false,
      "_shards" : {
           
        "total" : 1,
        "successful" : 1,
        "skipped" : 0,
        "failed" : 0
      },
      "hits" : {
           
        "total" : {
           
          "value" : 2,
          "relation" : "eq"
        },
        "max_score" : 0.0,
        "hits" : [
          {
           
            "_index" : "stars",
            "_type" : "user",
            "_id" : "3",
            "_score" : 0.0,
            "_source" : {
           
              "name" : "梁非凡",
              "age" : "40",
              "desc" : "吔*啦你",
              "tags" : [
                "桌面清理大师",
                "警察",
                "啵嘴"
              ]
            }
          },
          {
           
            "_index" : "stars",
            "_type" : "user",
            "_id" : "1",
            "_score" : 0.0,
            "_source" : {
           
              "name" : "坤坤",
              "age" : "22",
              "desc" : "鸡你太美",
              "tags" : [
                "唱",
                "跳",
                "rap",
                "篮球"
              ]
            }
          }
        ]
      }
    }
    

5.6 根据过滤条件查询

  • 请求
    GET stars/user/_search
    {
           
      "query": {
           
        "bool": {
           
          "must": [
            {
           
              "match": {
           
                "name": "凡"
              }
            }
          ],
          "filter": [
            {
           
              "range": {
           
                "age": {
           
                  "gte": 10, // 大于等于10岁
                  "lte": 30 // 小于等于30岁
                }
              }
            }
          ]
        }
      }
    }
    
  • 响应
    {
           
      "took" : 1,
      "timed_out" : false,
      "_shards" : {
           
        "total" : 1,
        "successful" : 1,
        "skipped" : 0,
        "failed" : 0
      },
      "hits" : {
           
        "total" : {
           
          "value" : 1,
          "relation" : "eq"
        },
        "max_score" : 0.4471386,
        "hits" : [
          {
           
            "_index" : "stars",
            "_type" : "user",
            "_id" : "2",
            "_score" : 0.4471386,
            "_source" : {
           
              "name" : "吴亦凡",
              "age" : "29",
              "desc" : "大碗宽面",
              "tags" : [
                "加拿大",
                "电鳗",
                "说唱",
                "嘻哈"
              ]
            }
          }
        ]
      }
    }
    

5.7 匹配多个条件查询

  • 请求
    GET stars/user/_search
    {
           
      "query": {
           
        "match": {
           
          "tags": "唱 跳" // 多个条件使用空格隔开
        }
      }
    }
    
  • 响应
    {
           
      "took" : 1,
      "timed_out" : false,
      "_shards" : {
           
        "total" : 1,
        "successful" : 1,
        "skipped" : 0,
        "failed" : 0
      },
      "hits" : {
           
        "total" : {
           
          "value" : 2,
          "relation" : "eq"
        },
        "max_score" : 1.7137355,
        "hits" : [
          {
           
            "_index" : "stars",
            "_type" : "user",
            "_id" : "1",
            "_score" : 1.7137355,
            "_source" : {
           
              "name" : "坤坤",
              "age" : "22",
              "desc" : "鸡你太美",
              "tags" : [
                "唱",
                "跳",
                "rap",
                "篮球"
              ]
            }
          },
          {
           
            "_index" : "stars",
            "_type" : "user",
            "_id" : "2",
            "_score" : 0.4471386,
            "_source" : {
           
              "name" : "吴亦凡",
              "age" : "29",
              "desc" : "大碗宽面",
              "tags" : [
                "加拿大",
                "电鳗",
                "说唱",
                "嘻哈"
              ]
            }
          }
        ]
      }
    }
    

5.8 精确查询

关于分词:

  • term:直接通过倒排索引指定的词条进行精确查询
  • match:先分析文档,再通过分析的文档进行查询

两个字段类型:

  • text:会被分词器解析
  • keyword:不会被分词器解析

5.9 高亮查询

  • 请求
    GET stars/user/_search
    {
           
      "query": {
           
        "match": {
           
          "name": "吴亦凡"
        }
      },
      "highlight": {
           
        "fields": {
           
          "name": {
           }
        }
      }
    }
    
  • 响应
    {
           
      "took" : 96,
      "timed_out" : false,
      "_shards" : {
           
        "total" : 1,
        "successful" : 1,
        "skipped" : 0,
        "failed" : 0
      },
      "hits" : {
           
        "total" : {
           
          "value" : 2,
          "relation" : "eq"
        },
        "max_score" : 2.313365,
        "hits" : [
          {
           
            "_index" : "stars",
            "_type" : "user",
            "_id" : "2",
            "_score" : 2.313365,
            "_source" : {
           
              "name" : "吴亦凡",
              "age" : "29",
              "desc" : "大碗宽面",
              "tags" : [
                "加拿大",
                "电鳗",
                "说唱",
                "嘻哈"
              ]
            },
            "highlight" : {
           
              "name" : [
                "" // 高亮标签
              ]
            }
          },
          {
           
            "_index" : "stars",
            "_type" : "user",
            "_id" : "3",
            "_score" : 0.4471386,
            "_source" : {
           
              "name" : "梁非凡",
              "age" : "40",
              "desc" : "吔*啦你",
              "tags" : [
                "桌面清理大师",
                "警察",
                "啵嘴"
              ]
            },
            "highlight" : {
           
              "name" : [
                "梁非"
              ]
            }
          }
        ]
      }
    }
    

5.10 自定义高亮标签

  • 请求
GET stars/user/_search
{
     
  "query": {
     
    "match": {
     
      "name": "吴亦凡"
    }
  },
  "highlight": {
     
    "pre_tags": "

", "post_tags": "

"
, "fields": { "name": { } } } }
  • 响应
{
     
  "took" : 4,
  "timed_out" : false,
  "_shards" : {
     
    "total" : 1,
    "successful" : 1,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
     
    "total" : {
     
      "value" : 2,
      "relation" : "eq"
    },
    "max_score" : 2.313365,
    "hits" : [
      {
     
        "_index" : "stars",
        "_type" : "user",
        "_id" : "2",
        "_score" : 2.313365,
        "_source" : {
     
          "name" : "吴亦凡",
          "age" : "29",
          "desc" : "大碗宽面",
          "tags" : [
            "加拿大",
            "电鳗",
            "说唱",
            "嘻哈"
          ]
        },
        "highlight" : {
     
          "name" : [
            "

"
] } }, { "_index" : "stars", "_type" : "user", "_id" : "3", "_score" : 0.4471386, "_source" : { "name" : "梁非凡", "age" : "40", "desc" : "吔*啦你", "tags" : [ "桌面清理大师", "警察", "啵嘴" ] }, "highlight" : { "name" : [ "梁非

"
] } } ] } }

三、SpringBoot 整合 Elasticsearch

3.1 环境搭建

  1. 导入依赖

    注意 Elasticsearch 版本需保持一致。

    <dependency>
        <groupId>org.springframework.bootgroupId>
        <artifactId>spring-boot-starter-data-elasticsearchartifactId>
    dependency>
    
  2. 编写配置类

    @Configuration
    public class RestClientConfig extends AbstractElasticsearchConfiguration {
           
    
        @Override
        @Bean
        public RestHighLevelClient elasticsearchClient() {
           
            final ClientConfiguration clientConfiguration = ClientConfiguration.builder()
                    .connectedTo("39.105.80.221:9200").build();
            return RestClients.create(clientConfiguration).rest();
        }
    
    }
    

3.2 索引相关操作

  1. 索引的创建
    @SpringBootTest
    class ElasticApplicationTests {
           
    
        @Autowired
        RestHighLevelClient elasticsearchClient;
    
        /**
         * 测试索引的创建
         */
        @Test
        void test01() throws IOException {
           
            // 创建请求
            CreateIndexRequest request = new CreateIndexRequest("test_index");
            // 客户端执行请求
            CreateIndexResponse response = elasticsearchClient.indices().create(request, RequestOptions.DEFAULT);
            System.out.println(response);
        }
    
    }
    
  2. 判断索引是否存在
    @SpringBootTest
    class ElasticApplicationTests {
           
    
        @Autowired
        RestHighLevelClient elasticsearchClient;
    
        /**
         * 测试判断索引是否存在
         */
        @Test
        void test02() throws IOException {
           
            // 创建请求
            GetIndexRequest request = new GetIndexRequest("test_index");
            // 客户端执行请求
            boolean response = elasticsearchClient.indices().exists(request, RequestOptions.DEFAULT);
            System.out.println(response);
        }
    
    }
    
  3. 索引的删除
@SpringBootTest
class ElasticApplicationTests {
     

    @Autowired
    RestHighLevelClient elasticsearchClient;

    /**
     * 测试索引的删除
     */
    @Test
    void test03() throws IOException {
     
        // 创建请求
        DeleteIndexRequest request = new DeleteIndexRequest("test_index");
        // 客户端执行请求
        AcknowledgedResponse response = elasticsearchClient.indices().delete(request, RequestOptions.DEFAULT);
        System.out.println(response.isAcknowledged());
    }

}

3.3 文档相关操作

  1. 文档的添加
@Test
void test04() throws IOException {
     
    // 创建对象
    User user = new User("testUser", 18);
    // 创建请求
    IndexRequest request = new IndexRequest("test_index");
    // 设置id
    request.id("1");
    // 设置请求超时时间
    request.timeout(TimeValue.timeValueSeconds(1));
    // 将对象转为JSON数据放入请求
    request.source(objectMapper.writeValueAsString(user), XContentType.JSON);
    // 客户端发送请求
    IndexResponse response = elasticsearchClient.index(request, RequestOptions.DEFAULT);
    System.out.println(response.toString());
    System.out.println(response.status());
}
  1. 判断文档是否存在
@Test
void test05() throws IOException {
     
    // 创建请求
    GetRequest request = new GetRequest("test_index", "1");
    // 客户端发送请求
    boolean response = elasticsearchClient.exists(request, RequestOptions.DEFAULT);
    System.out.println(response);
}
  1. 文档信息的获取
@Test
void test06() throws IOException {
     
    // 创建请求
    GetRequest request = new GetRequest("test_index", "1");
    // 客户端发送请求
    GetResponse response = elasticsearchClient.get(request, RequestOptions.DEFAULT);
    System.out.println(response.getSourceAsString());
}
  1. 文档信息的更新
@Test
void test07() throws IOException {
     
    // 创建对象
    User user = new User("testUser", 28);
    // 创建请求
    UpdateRequest request = new UpdateRequest("test_index", "1");
    request.doc(objectMapper.writeValueAsString(user), XContentType.JSON);
    // 客户端发送请求
    UpdateResponse response = elasticsearchClient.update(request, RequestOptions.DEFAULT);
    System.out.println(response.status());
}
  1. 文档信息的删除
@Test
void test08() throws IOException {
     
    // 创建请求
    DeleteRequest request = new DeleteRequest("test_index", "1");
    // 设置请求超时时间
    request.timeout(TimeValue.timeValueSeconds(1));
    // 客户端发送请求
    DeleteResponse response = elasticsearchClient.delete(request, RequestOptions.DEFAULT);
    System.out.println(response.status());
}
  1. 文档数据的批量插入
@Test
void test09() throws IOException {
     
    // 创建请求
    BulkRequest request = new BulkRequest();
    // 设置超时时间
    request.timeout(TimeValue.timeValueSeconds(10));
    // 创建批量数据
    ArrayList<User> users = new ArrayList<>();
    users.add(new User("testUser02", 20));
    users.add(new User("testUser03", 21));
    users.add(new User("testUser04", 22));
    users.add(new User("testUser05", 23));
    users.add(new User("testUser06", 24));
    // 将批量数据添加至请求
    for (int i = 0; i < users.size(); i++) {
     
        request.add(
                new IndexRequest("test_index")
                        .id("" + i)
                        .source(objectMapper.writeValueAsString(users.get(i)), XContentType.JSON)
        );
    }
    // 客户端发送请求
    BulkResponse responses = elasticsearchClient.bulk(request, RequestOptions.DEFAULT);
    System.out.println(responses.hasFailures());
}
  1. 文档的查询
@Test
void test10() throws IOException {
     
    // 创建请求
    SearchRequest request = new SearchRequest("test_index");
    // 设置搜索条件
    SearchSourceBuilder sourceBuilder = new SearchSourceBuilder();
    // 创建查询构建器
    sourceBuilder.query(QueryBuilders.termQuery("name.keyword", "testUser02"));
    // 设置超时时间
    sourceBuilder.timeout(TimeValue.timeValueSeconds(60));
    request.source(sourceBuilder);
    // 客户端发送请求
    SearchResponse response = elasticsearchClient.search(request, RequestOptions.DEFAULT);
    System.out.println(objectMapper.writeValueAsString(response.getHits()));
    for (SearchHit hit : response.getHits().getHits()) {
     
        System.out.println("----------");
        System.out.println(hit.getSourceAsMap());
    }
}

四、实战应用 - 京东搜索

4.1 环境搭建

  1. 导入依赖
    <dependency>
        <groupId>org.springframework.bootgroupId>
        <artifactId>spring-boot-starter-data-elasticsearchartifactId>
    dependency>
    
    <dependency>
        <groupId>org.springframework.bootgroupId>
        <artifactId>spring-boot-starter-webartifactId>
    dependency>
    
    <dependency>
        <groupId>org.springframework.bootgroupId>
        <artifactId>spring-boot-starter-thymeleafartifactId>
    dependency>
    
    <dependency>
        <groupId>org.jsoupgroupId>
        <artifactId>jsoupartifactId>
        <version>1.13.1version>
    dependency>
    
  2. 配置文件
    server:
      port: 8080
    spring:
      thymeleaf:
        cache: false # 关闭 thymeleaf 缓存
    
  3. controller
    @Controller
    public class IndexController {
           
    
        @GetMapping({
           "/", "/index"})
        public String index() {
           
            return "index";
        }
    
    }
    

4.2 处理爬虫数据

搭配项目仓库 Web IDE 观看体验更佳
在这里插入图片描述

你可能感兴趣的:(SpringBoot技术整合,数据库,elasticsearch,java,分布式,mysql)