- 第26篇:pFedLoRA: Model-Heterogeneous Personalized Federated Learning with LoRA使用lora微调的模型异构个性化联邦学习
还不秃顶的计科生
联邦学习深度学习人工智能开发语言
第一部分:解决的问题联邦学习(FederatedLearning,FL)是一种分布式机器学习方法,允许客户端在本地数据上训练模型,同时通过中心服务器共享学习成果。传统FL框架假设客户端使用相同的模型结构(模型同构),但在实际中可能面对:统计异质性:客户端的数据分布不均(non-IID)。资源异质性:客户端硬件资源有限。模型异质性:客户端可能拥有不同的模型结构。模型异构的个性化联邦学习(MHPFL)
- (九万字)面向2025年BOSS直聘人工智能算法工程师高频面试题解析
快撑死的鱼
人工智能回归pythonpytorch
面向2025年BOSS直聘人工智能算法工程师高频面试题解析1.机器学习(ML)理论解析机器学习是让计算机从数据中学习规律的一套方法论,包含监督学习、无监督学习和强化学习等范式。在监督学习中,给定带标签的数据,算法尝试学习从输入到输出的映射关系;无监督学习则在缺乏标签的情况下挖掘数据内在结构;强化学习则让智能体通过与环境交互、依据奖赏反馈来改进策略(Q-learning-Wikipedia)。机器学
- ROS turtlesim 无法通过 键盘控制 turtle 移动
狗头鹰
ubuntulinux
原因:当我们在singlemachine上进行试验时,如果出现了上述问题,除了指令输入错误、本地没该功能包,未选中turtle_teleop_key终端进行操作等简单原因外,还有可能是未正确设置环境变量ROS_MASTER_URI,ROS_HOSTNAMEsolutions:vim~/.basrhc打开文件.bashrc,在文件末尾加上exportROS_HOSTNAME=ubuntu.local
- Java JVM性能优化与调优
卖血买老婆
Java专栏javajvm性能优化
优化Java应用的性能通常需要深入理解JVM(JavaVirtualMachine)的工作原理和运行机制,因为JVM直接决定了Java程序的运行时表现。以下是JVM性能优化与调优的要点和详细指导,涵盖常见问题、调优工具及策略。一、常见性能问题内存相关问题堆内存不足(OutOfMemoryError:Javaheapspace)元空间(Metaspace)不足频繁的垃圾回收导致长时间停顿内存泄漏(对
- JVM篇:内存分区及作用及各部分可能发生的异常
ashane1314
jvm
一、运行时数据区总览二、JVM内存分区及异常1.程序计数器(ProgramCounterRegister)作用:记录当前线程执行字节码的地址(行号),保证线程切换后能恢复到正确位置。特点:线程私有,唯一无内存溢出的区域。异常:无。由JVM规范严格管理,不会发生内存溢出。2.虚拟机栈(JavaVirtualMachineStack)作用:存储方法调用的栈帧(局部变量表、操作数栈、动态链接、方法出口等
- 深度学习在医疗影像分析中的革命性应用
Echo_Wish
人工智能前沿技术深度学习人工智能
深度学习在医疗影像分析中的革命性应用引言医疗影像分析是现代医学中不可或缺的一部分,特别是在疾病诊断和治疗过程中发挥了至关重要的作用。随着深度学习技术的发展,医疗影像分析的效率和准确性得到了显著提升。本文将探讨如何利用深度学习技术,特别是Python编程语言,来优化医疗影像分析,展示具体的代码实例,并举例说明其实际应用效果。深度学习与医疗影像分析深度学习(DeepLearning)是一种基于人工神经
- mongoDB 命令行操作
小胖_@
mongomongodb数据库命令行
mongoDBmongo命令MongoDBshellversionv4.4.15usage:mongo[options][dbaddress][filenames(endingin.js)]dbaddresscanbe:foofoodatabaseonlocalmachine192.168.0.5/foofoodatabaseon192.168.0.5machine192.168.0.5:9999
- java脚本弹出输入框,使用弹出框编辑(增加)表单内容
jordan.xue
java脚本弹出输入框
0、背景使用Amazeui中Prompt模态窗口Modal1、JQuery功能:表单复位获取表单的值,并显示在修改弹出框中(文本框、单选、多选、下拉框)发送Post异步请求给后台自刷新$(function(){//编辑功能$('table.edit').on("click",function(){//表单复位document.getElementById("form-machineRole").r
- 基于基于强化学习(Q-Learning)用于底层动态频谱接入(DSA)认知无线电网络的资源分配研究(Matlab代码实现)
长安程序猿
网络matlab开发语言
欢迎来到本博客❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。本文目录如下:目录⛳️赠与读者1概述一、动态频谱接入(DSA)的基本原理与挑战1.DSA的核心机制2.关键挑战二、Q-Learning在DSA资源分配中的应用框架1.算法原理2.典型应用场景三、关键参数与模型设计1.状态空间定义2.动作空间设计3.奖励函数设计四、研究进展与优化方法1.
- JVM 内存结构 详解
飞滕人生TYF
javajvm内存结构
JVM(JavaVirtualMachine)内存结构是Java程序运行的核心,它管理着程序运行时所需的内存空间,确保内存分配、回收以及线程之间的安全和高效通信。以下是JVM内存结构的详细解析。1.JVM内存结构概览JVM的内存结构主要分为以下五个区域:程序计数器(ProgramCounterRegister)Java虚拟机栈(JavaVirtualMachineStack)本地方法栈(Nativ
- 强化学习:原理、概念与代码实践
AndrewHZ
深度学习新浪潮人工智能深度学习强化学习机器学习算法deepseek
一、引言强化学习(ReinforcementLearning)作为机器学习的一个重要分支,旨在通过智能体(agent)与环境的交互,学习到最优的行为策略,以最大化长期累积奖励。它在机器人控制、游戏、自动驾驶、资源管理等众多领域都取得了显著的成功。本文将深入介绍强化学习的数学原理、核心概念,并通过公式推导来加深理解,同时结合一个具体的实例,使用Python语言进行代码实现,帮助读者全面掌握强化学习的
- SFT(监督微调)和RLHF(基于人类反馈的强化学习)的区别
钟小宇
LLM人工智能语言模型
SFT(监督微调)和RLHF(基于人类反馈的强化学习)的区别STF(SupervisedFine-Tuning)和RLHF(ReinforcementLearningfromHumanFeedback)是两种不同的模型训练方法,分别用于不同的阶段和目的。以下是它们的主要区别:1.方法概述STF(监督微调):定义:STF是指在已经预训练好的模型基础上,使用标注好的数据进一步训练模型,使其在特定任务上
- 阅读论文“用于车联网安全车载通信的机器学习技术“的学习笔记
饮长安千年月
物联网安全安全机器学习学习
前言论文全称为MachineLearningTechnologiesforSecureVehicularCommunicationinInternetofVehicles:RecentAdvancescandApplications智能交通系统(ITS)和计算系统的快速发展为智能交通安全提供了新的科学研究,并提供了舒适和高效的解决方案。人工智能(AI)已被广泛用于优化不同研究领域的传统数据驱动方法
- 机器学些|实战?
dami_king
随笔机器学习
机器学习实战:从零到%1…今天聊聊机器学习(MachineLearning,ML),这个听起来高大上的技术其实并没有那么神秘。跟着我的节奏,咱们一起来探索一下如何从零开始!准备工作:安装和导入必要的库在开始我们的房价预测项目之前,我们需要准备好开发环境并导入所有必要的库。这些库将帮助我们处理数据、构建模型、评估性能以及可视化结果。安装Python和JupyterNotebook首先,确保你已经安装
- 机器学习和线性回归、softmax回归
小名叫咸菜
人工智能线性回归
监督学习监督学习(supervisedlearning)擅⻓在“给定输⼊特征”的情况下预测标签。每个“特征-标签”对都称为一个样本(example)。我们的目标是生成一个模型,能够将任何输⼊特征映射到标签(即预测)。回归——平方误差损失函数回归(regression)是最简单的监督学习任务之一。分类——交叉熵样本属于“哪一类”的问题称为分类问题回归是训练一个回归函数来输出一个数值;分类是训练一个分
- 强化学习原理与代码实战案例讲解
AI天才研究院
AI大模型企业级应用开发实战DeepSeekR1&大数据AI人工智能大模型计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍1.1什么是强化学习?强化学习(ReinforcementLearning,RL)是机器学习的一个重要分支,它关注的是智能体(Agent)如何在环境中通过与环境交互来学习最优的行为策略。与其他机器学习方法不同,强化学习并不依赖于预先标注的数据,而是通过试错的方式来学习。想象一下,你正在训练一只小狗学习坐下。你不会给它看成千上万张“坐下”的照片,而是会给它一些指令,比如“坐下”,如果它照
- Android-Amlogic-GPIO
shizhong2006
systemBSPandroid驱动开发linux
问题显示外设供电电压是19V,通过GPIO控制上下电,下面以此为例,梳理基于Amlogic平台,在Android系统里对GPIO的控制过程。Linuxversion5.4.125-android11-2-g05a36b0e5a09-dirtyMachinemodel:AmlogicT5DT950D4AM3011.5G分析过程原理图通过原理图,确定对显示外设供电的GPIO是GPIOH_13Andro
- 强化学习在连续动作空间的应用:DDPG与TD3
AI天才研究院
计算AI大模型应用入门实战与进阶大数据人工智能语言模型AILLMJavaPython架构设计AgentRPA计算AI大模型应用
1.背景介绍1.1强化学习简介强化学习(ReinforcementLearning,简称RL)是一种机器学习方法,它通过让智能体(Agent)在环境(Environment)中与环境进行交互,学习如何根据观察到的状态(State)选择动作(Action),以最大化某种长期累积奖励(Reward)的方法。强化学习的核心问题是学习一个策略(Policy),即在给定状态下选择动作的映射关系。1.2连续动
- 书籍-《机器学习的秘密:它是如何工作的以及它对你的意义》
机器学习深度学习人工智能
书籍:SecretsOfMachineLearning:HowItWorksAndWhatItMeansForYou作者:TomKohn出版:WorldScientificPublishingCoPteLtd编辑:陈萍萍的公主@一点人工一点智能下载:书籍下载-《机器学习的秘密:它是如何工作的以及它对你的意义》01书籍介绍在众多关于机器学习和人工智能的技术文献及充满恐慌的书籍中,《机器学习的秘密》犹
- 翻译Deep Learning and the Game of Go(14)第十二章 采用actor-critic方法的强化学习
idol_watch
围棋与深度学习
本章包括:利用优势使强化学习更有效率用actor-critic方法来实现自我提升AI设计和训练Keras的多输出神经网络如果你正在学习下围棋,最好的改进方法之一是让一个水平更高的棋手给你复盘。有时候,最有用的反馈只是指出你在哪里赢棋或输棋。复盘的人可能会给出这样的评论,“你下了30步后已经远远落后了”或“在下了110步后,你有一个获胜的局面,但你的对手在130时扭转了局面。”为什么这种反馈是有帮助
- ORAM (Oblivious random access machine) 不经意随机访问机
库卡卡啦
开发语言密码学算法网络安全安全
一、定义目的是隐藏对真实数据块的访问,使得攻击者不能区分每一次访问是真实还是随机的。是一种可以用来完全隐藏IO操作的数据访问模式的加密方案。访问模式是指IO操作访问文件的顺序、访问文件的频率、读写顺序等,当用户把数据存储在不可信的第三方时,即使数据是加密的,第三方仍能通过收集用户访问模式信息推断出用户隐私,在ORAM方案中,若两次访问序列长度相同,则其访问模式是相同的,使得第三方无法通过访问模式获
- 【深度学习】计算机视觉(CV)-图像分类-ResNet(Residual Network,残差网络)
IT古董
深度学习人工智能深度学习计算机视觉分类
ResNet(ResidualNetwork,残差网络)是一种深度卷积神经网络(CNN)架构,由何恺明(KaimingHe)等人在2015年提出,最初用于ImageNet竞赛,并在分类任务上取得了冠军。ResNet的核心思想是残差学习(ResidualLearning),它通过跳跃连接(SkipConnections)解决了深度神经网络训练中的梯度消失和梯度爆炸问题,使得非常深的网络(如50层、1
- 【深度解析】ICLR:人工智能领域的顶级学术会议 | 顶会与SCI期刊的区别全攻略
X_taiyang18
人工智能
【深度解析】ICLR:人工智能领域的顶级学术会议|顶会与SCI期刊的区别全攻略简介在人工智能和机器学习领域,ICLR(InternationalConferenceonLearningRepresentations)被誉为“深度学习的顶级会议”。自2013年由深度学习三巨头中的YoshuaBengio和YannLeCun创办以来,ICLR迅速崛起,成为全球科研人员争相投稿的学术盛会。那么,ICLR
- 宇树G1嵌入式软件架构及技术实现
爱吃青菜的大力水手
架构fpga开发机器人算法
Opensourcedatacollection:https://github.com/unitreerobotics/avp_teleoperateOpensourcelearningalgorithms:https://github.com/unitreerobotics/unitree_IL_lerobotOpensourcedatasetsandmodels:https://hugging
- JVM内存模型与Java线程内存模型的区别
我心向阳iu
面试-场景应用题#JVM#Java多线程jvmjava开发语言
文章目录JVM内存模型与Java线程内存模型的区别JVM内存模型1.程序计数器(ProgramCounterRegister)2.Java虚拟机栈(JavaVirtualMachineStacks)3.本地方法栈(NativeMethodStack)4.Java堆(JavaHeap)5.方法区(MethodArea)6.运行时常量池(RuntimeConstantPool)7.直接内存(Direc
- 探索Redux:构建可预测、可测试的JavaScript应用
黎杉娜Torrent
探索Redux:构建可预测、可测试的JavaScript应用learn-redux:boom:ComprehensiveNotesforLearning(howtouse)ReduxtomanagestateinyourWeb/Mobile(React.js)Apps.项目地址:https://gitcode.com/gh_mirrors/le/learn-redux项目介绍在现代Web开发中,J
- 【学习笔记】李宏毅2021春机器学习课程第2.3节:Adaptive Learning Rate
Harryline-lx
机器学习机器学习人工智能深度学习
文章目录Trainingstuck≠SmallGradientDifferentparametersneedsdifferentlearningrateRootmeansquareAdagradRMSPropAdamLearningRateSchedulingTrainingstuck≠SmallGradient首先要明确的一点是,目前当我们用gradientdescend来做optimizati
- Go 语言的协程(goroutine)
yymagicer
gogolang算法
Go语言的协程(goroutine)是轻量级的并发机制,可以理解为Go中的线程,但它比线程更轻量,且由Go语言的运行时调度器管理。下面详细说明Go协程的原理、使用方法以及应用场景。1.协程原理Go协程(goroutine)在运行时由Go调度器管理,其运行时模型不同于传统的操作系统线程。Go的调度器采用M模型,即多个goroutine由少量的线程管理和调度。它依赖于两个关键组件:M(Machine)
- Windows 11 安装 Docker
mrljw
docker容器运维
1.以管理员身份打开WindowsPowerShell2.执行下面三行命令来启动WSL和虚拟机平台dism.exe/online/enable-feature/featurename:Microsoft-Windows-Subsystem-Linux/all/norestartdism.exe/online/enable-feature/featurename:VirtualMachinePlat
- Oracle DBA日常任务——查杀死锁
薛定谔之死猫
脚本语言编程oracle任务sessionobjectkillaccess
Oracle的锁分为两大类,一类就是极为常见的DML事务锁,是为保障数据库系统数据一致性而存在的锁,其中分共享锁、排它锁等,不同的DBMS对这类锁的实现参差不齐;另一大类锁就是DDL级锁,这类锁一般出现在开发或发布时候,一旦出现比较棘手。下面就两类所的锁查找和灭杀做一个阐述。1、查找DML锁selectp.spid,s.sid,s.serial#,s.username,s.machine,s.os
- ios内付费
374016526
ios内付费
近年来写了很多IOS的程序,内付费也用到不少,使用IOS的内付费实现起来比较麻烦,这里我写了一个简单的内付费包,希望对大家有帮助。
具体使用如下:
这里的sender其实就是调用者,这里主要是为了回调使用。
[KuroStoreApi kuroStoreProductId:@"产品ID" storeSender:self storeFinishCallBa
- 20 款优秀的 Linux 终端仿真器
brotherlamp
linuxlinux视频linux资料linux自学linux教程
终端仿真器是一款用其它显示架构重现可视终端的计算机程序。换句话说就是终端仿真器能使哑终端看似像一台连接上了服务器的客户机。终端仿真器允许最终用户用文本用户界面和命令行来访问控制台和应用程序。(LCTT 译注:终端仿真器原意指对大型机-哑终端方式的模拟,不过在当今的 Linux 环境中,常指通过远程或本地方式连接的伪终端,俗称“终端”。)
你能从开源世界中找到大量的终端仿真器,它们
- Solr Deep Paging(solr 深分页)
eksliang
solr深分页solr分页性能问题
转载请出自出处:http://eksliang.iteye.com/blog/2148370
作者:eksliang(ickes) blg:http://eksliang.iteye.com/ 概述
长期以来,我们一直有一个深分页问题。如果直接跳到很靠后的页数,查询速度会比较慢。这是因为Solr的需要为查询从开始遍历所有数据。直到Solr的4.7这个问题一直没有一个很好的解决方案。直到solr
- 数据库面试题
18289753290
面试题 数据库
1.union ,union all
网络搜索出的最佳答案:
union和union all的区别是,union会自动压缩多个结果集合中的重复结果,而union all则将所有的结果全部显示出来,不管是不是重复。
Union:对两个结果集进行并集操作,不包括重复行,同时进行默认规则的排序;
Union All:对两个结果集进行并集操作,包括重复行,不进行排序;
2.索引有哪些分类?作用是
- Android TV屏幕适配
酷的飞上天空
android
先说下现在市面上TV分辨率的大概情况
两种分辨率为主
1.720标清,分辨率为1280x720.
屏幕尺寸以32寸为主,部分电视为42寸
2.1080p全高清,分辨率为1920x1080
屏幕尺寸以42寸为主,此分辨率电视屏幕从32寸到50寸都有
适配遇到问题,已1080p尺寸为例:
分辨率固定不变,屏幕尺寸变化较大。
如:效果图尺寸为1920x1080,如果使用d
- Timer定时器与ActionListener联合应用
永夜-极光
java
功能:在控制台每秒输出一次
代码:
package Main;
import javax.swing.Timer;
import java.awt.event.*;
public class T {
private static int count = 0;
public static void main(String[] args){
- Ubuntu14.04系统Tab键不能自动补全问题解决
随便小屋
Ubuntu 14.04
Unbuntu 14.4安装之后就在终端中使用Tab键不能自动补全,解决办法如下:
1、利用vi编辑器打开/etc/bash.bashrc文件(需要root权限)
sudo vi /etc/bash.bashrc
接下来会提示输入密码
2、找到文件中的下列代码
#enable bash completion in interactive shells
#if
- 学会人际关系三招 轻松走职场
aijuans
职场
要想成功,仅有专业能力是不够的,处理好与老板、同事及下属的人际关系也是门大学问。如何才能在职场如鱼得水、游刃有余呢?在此,教您简单实用的三个窍门。
第一,多汇报
最近,管理学又提出了一个新名词“追随力”。它告诉我们,做下属最关键的就是要多请示汇报,让上司随时了解你的工作进度,有了新想法也要及时建议。不知不觉,你就有了“追随力”,上司会越来越了解和信任你。
第二,勤沟通
团队的力
- 《O2O:移动互联网时代的商业革命》读书笔记
aoyouzi
读书笔记
移动互联网的未来:碎片化内容+碎片化渠道=各式精准、互动的新型社会化营销。
O2O:Online to OffLine 线上线下活动
O2O就是在移动互联网时代,生活消费领域通过线上和线下互动的一种新型商业模式。
手机二维码本质:O2O商务行为从线下现实世界到线上虚拟世界的入口。
线上虚拟世界创造的本意是打破信息鸿沟,让不同地域、不同需求的人
- js实现图片随鼠标滚动的效果
百合不是茶
JavaScript滚动属性的获取图片滚动属性获取页面加载
1,获取样式属性值
top 与顶部的距离
left 与左边的距离
right 与右边的距离
bottom 与下边的距离
zIndex 层叠层次
例子:获取左边的宽度,当css写在body标签中时
<div id="adver" style="position:absolute;top:50px;left:1000p
- ajax同步异步参数async
bijian1013
jqueryAjaxasync
开发项目开发过程中,需要将ajax的返回值赋到全局变量中,然后在该页面其他地方引用,因为ajax异步的原因一直无法成功,需将async:false,使其变成同步的。
格式:
$.ajax({ type: 'POST', ur
- Webx3框架(1)
Bill_chen
eclipsespringmaven框架ibatis
Webx是淘宝开发的一套Web开发框架,Webx3是其第三个升级版本;采用Eclipse的开发环境,现在支持java开发;
采用turbine原型的MVC框架,扩展了Spring容器,利用Maven进行项目的构建管理,灵活的ibatis持久层支持,总的来说,还是一套很不错的Web框架。
Webx3遵循turbine风格,velocity的模板被分为layout/screen/control三部
- 【MongoDB学习笔记五】MongoDB概述
bit1129
mongodb
MongoDB是面向文档的NoSQL数据库,尽量业界还对MongoDB存在一些质疑的声音,比如性能尤其是查询性能、数据一致性的支持没有想象的那么好,但是MongoDB用户群确实已经够多。MongoDB的亮点不在于它的性能,而是它处理非结构化数据的能力以及内置对分布式的支持(复制、分片达到的高可用、高可伸缩),同时它提供的近似于SQL的查询能力,也是在做NoSQL技术选型时,考虑的一个重要因素。Mo
- spring/hibernate/struts2常见异常总结
白糖_
Hibernate
Spring
①ClassNotFoundException: org.aspectj.weaver.reflect.ReflectionWorld$ReflectionWorldException
缺少aspectjweaver.jar,该jar包常用于spring aop中
②java.lang.ClassNotFoundException: org.sprin
- jquery easyui表单重置(reset)扩展思路
bozch
formjquery easyuireset
在jquery easyui表单中 尚未提供表单重置的功能,这就需要自己对其进行扩展。
扩展的时候要考虑的控件有:
combo,combobox,combogrid,combotree,datebox,datetimebox
需要对其添加reset方法,reset方法就是把初始化的值赋值给当前的组件,这就需要在组件的初始化时将值保存下来。
在所有的reset方法添加完毕之后,就需要对fo
- 编程之美-烙饼排序
bylijinnan
编程之美
package beautyOfCoding;
import java.util.Arrays;
/*
*《编程之美》的思路是:搜索+剪枝。有点像是写下棋程序:当前情况下,把所有可能的下一步都做一遍;在这每一遍操作里面,计算出如果按这一步走的话,能不能赢(得出最优结果)。
*《编程之美》上代码有很多错误,且每个变量的含义令人费解。因此我按我的理解写了以下代码:
*/
- Struts1.X 源码分析之ActionForm赋值原理
chenbowen00
struts
struts1在处理请求参数之前,首先会根据配置文件action节点的name属性创建对应的ActionForm。如果配置了name属性,却找不到对应的ActionForm类也不会报错,只是不会处理本次请求的请求参数。
如果找到了对应的ActionForm类,则先判断是否已经存在ActionForm的实例,如果不存在则创建实例,并将其存放在对应的作用域中。作用域由配置文件action节点的s
- [空天防御与经济]在获得充足的外部资源之前,太空投资需有限度
comsci
资源
这里有一个常识性的问题:
地球的资源,人类的资金是有限的,而太空是无限的.....
就算全人类联合起来,要在太空中修建大型空间站,也不一定能够成功,因为资源和资金,技术有客观的限制....
&
- ORACLE临时表—ON COMMIT PRESERVE ROWS
daizj
oracle临时表
ORACLE临时表 转
临时表:像普通表一样,有结构,但是对数据的管理上不一样,临时表存储事务或会话的中间结果集,临时表中保存的数据只对当前
会话可见,所有会话都看不到其他会话的数据,即使其他会话提交了,也看不到。临时表不存在并发行为,因为他们对于当前会话都是独立的。
创建临时表时,ORACLE只创建了表的结构(在数据字典中定义),并没有初始化内存空间,当某一会话使用临时表时,ORALCE会
- 基于Nginx XSendfile+SpringMVC进行文件下载
denger
应用服务器Webnginx网络应用lighttpd
在平常我们实现文件下载通常是通过普通 read-write方式,如下代码所示。
@RequestMapping("/courseware/{id}")
public void download(@PathVariable("id") String courseID, HttpServletResp
- scanf接受char类型的字符
dcj3sjt126com
c
/*
2013年3月11日22:35:54
目的:学习char只接受一个字符
*/
# include <stdio.h>
int main(void)
{
int i;
char ch;
scanf("%d", &i);
printf("i = %d\n", i);
scanf("%
- 学编程的价值
dcj3sjt126com
编程
发一个人会编程, 想想以后可以教儿女, 是多么美好的事啊, 不管儿女将来从事什么样的职业, 教一教, 对他思维的开拓大有帮助
像这位朋友学习:
http://blog.sina.com.cn/s/articlelist_2584320772_0_1.html
VirtualGS教程 (By @林泰前): 几十年的老程序员,资深的
- 二维数组(矩阵)对角线输出
飞天奔月
二维数组
今天在BBS里面看到这样的面试题目,
1,二维数组(N*N),沿对角线方向,从右上角打印到左下角如N=4: 4*4二维数组
{ 1 2 3 4 }
{ 5 6 7 8 }
{ 9 10 11 12 }
{13 14 15 16 }
打印顺序
4
3 8
2 7 12
1 6 11 16
5 10 15
9 14
13
要
- Ehcache(08)——可阻塞的Cache——BlockingCache
234390216
并发ehcacheBlockingCache阻塞
可阻塞的Cache—BlockingCache
在上一节我们提到了显示使用Ehcache锁的问题,其实我们还可以隐式的来使用Ehcache的锁,那就是通过BlockingCache。BlockingCache是Ehcache的一个封装类,可以让我们对Ehcache进行并发操作。其内部的锁机制是使用的net.
- mysqldiff对数据库间进行差异比较
jackyrong
mysqld
mysqldiff该工具是官方mysql-utilities工具集的一个脚本,可以用来对比不同数据库之间的表结构,或者同个数据库间的表结构
如果在windows下,直接下载mysql-utilities安装就可以了,然后运行后,会跑到命令行下:
1) 基本用法
mysqldiff --server1=admin:12345
- spring data jpa 方法中可用的关键字
lawrence.li
javaspring
spring data jpa 支持以方法名进行查询/删除/统计。
查询的关键字为find
删除的关键字为delete/remove (>=1.7.x)
统计的关键字为count (>=1.7.x)
修改需要使用@Modifying注解
@Modifying
@Query("update User u set u.firstna
- Spring的ModelAndView类
nicegege
spring
项目中controller的方法跳转的到ModelAndView类,一直很好奇spring怎么实现的?
/*
* Copyright 2002-2010 the original author or authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* yo
- 搭建 CentOS 6 服务器(13) - rsync、Amanda
rensanning
centos
(一)rsync
Server端
# yum install rsync
# vi /etc/xinetd.d/rsync
service rsync
{
disable = no
flags = IPv6
socket_type = stream
wait
- Learn Nodejs 02
toknowme
nodejs
(1)npm是什么
npm is the package manager for node
官方网站:https://www.npmjs.com/
npm上有很多优秀的nodejs包,来解决常见的一些问题,比如用node-mysql,就可以方便通过nodejs链接到mysql,进行数据库的操作
在开发过程往往会需要用到其他的包,使用npm就可以下载这些包来供程序调用
&nb
- Spring MVC 拦截器
xp9802
spring mvc
Controller层的拦截器继承于HandlerInterceptorAdapter
HandlerInterceptorAdapter.java 1 public abstract class HandlerInterceptorAdapter implements HandlerIntercep