GCD(i,j)求和

题意

∑ i = 1 n ∑ j = 1 m g c d ( i , j ) \sum_{i=1}^n\sum_{j=1}^mgcd(i,j) i=1nj=1mgcd(i,j)
1 < = n , m < = 1 0 11 1<=n,m<=10^{11} 1<=n,m<=1011

思路

可以对式子进行一些变化如下
N = m i n ( n , m ) N=min(n,m) N=min(n,m)
原 式 = ∑ i = 1 N ∑ j = 1 N g c d ( i , j ) 原式=\sum_{i=1}^N\sum_{j=1}^Ngcd(i,j) =i=1Nj=1Ngcd(i,j)
= ∑ d = 1 N d ∑ i = 1 N ∑ j = 1 N [ g c d ( i , j ) = = d ] =\sum_{d=1}^Nd\sum_{i=1}^N\sum_{j=1}^N[gcd(i,j)==d] =d=1Ndi=1Nj=1N[gcd(i,j)==d]
= ∑ d = 1 N d ∑ i = 1 ⌊ N d ⌋ ∑ j = 1 ⌊ N d ⌋ [ g c d ( i , j ) = = 1 ] =\sum_{d=1}^Nd\sum_{i=1}^{\left \lfloor \frac{N}{d} \right \rfloor}\sum_{j=1}^{\left \lfloor \frac{N}{d} \right \rfloor}[gcd(i,j)==1] =d=1Ndi=1dNj=1dN[gcd(i,j)==1]
后面的部分可以用莫比乌斯反演转换为 O ( n ) O(\sqrt{n}) O(n ),总复杂度就是为 O ( n n ) O(n\sqrt{n}) O(nn ),还是不可做,转换后为
= ∑ d = 1 N d ∑ i = 1 ⌊ N d ⌋ μ ( i ) ⌊ n i d ⌋ ⌊ m i d ⌋ =\sum_{d=1}^Nd\sum_{i=1}^{\left \lfloor \frac{N}{d} \right \rfloor}\mu(i)\left \lfloor \frac{n}{id} \right \rfloor\left \lfloor \frac{m}{id} \right \rfloor =d=1Ndi=1dNμ(i)idnidm
上式等价于
= ∑ d = 1 N d ∑ i d = 1 N μ ( i ) ⌊ n i d ⌋ ⌊ m i d ⌋ =\sum_{d=1}^Nd\sum_{id=1}^{N}\mu(i)\left \lfloor \frac{n}{id} \right \rfloor\left \lfloor \frac{m}{id} \right \rfloor =d=1Ndid=1Nμ(i)idnidm
T = i d T=id T=id,对于每一个 T T T来说只有 i = T d i=\frac{T}{d} i=dT,且 T % d = = 0 T\%d==0 T%d==0,带入得
= ∑ d = 1 N d ∑ T = 1 N [ T % d = = 0 ] μ ( T d ) ⌊ n T ⌋ ⌊ m T ⌋ =\sum_{d=1}^Nd\sum_{T=1}^{N}[T\%d==0]\mu(\frac{T}{d})\left \lfloor \frac{n}{T} \right \rfloor\left \lfloor \frac{m}{T} \right \rfloor =d=1NdT=1N[T%d==0]μ(dT)TnTm
由于 T T T只和 d d d有关,也可以认为是 T T T 1 − N 1-N 1N d d d得倍数那么式子就可以变为
= ∑ d = 1 N d ∑ d ∣ T N μ ( T d ) ⌊ n T ⌋ ⌊ m T ⌋ =\sum_{d=1}^Nd\sum_{d|T}^{N}\mu(\frac{T}{d})\left \lfloor \frac{n}{T} \right \rfloor\left \lfloor \frac{m}{T} \right \rfloor =d=1NddTNμ(dT)TnTm
d d d乘进去
= ∑ d = 1 N ∑ d ∣ T N d μ ( T d ) ⌊ n T ⌋ ⌊ m T ⌋ =\sum_{d=1}^N\sum_{d|T}^{N}d\mu(\frac{T}{d})\left \lfloor \frac{n}{T} \right \rfloor\left \lfloor \frac{m}{T} \right \rfloor =d=1NdTNdμ(dT)TnTm
我们可以改变枚举变量,原式枚举的是 d d d的倍数,已知在 1 − N 1-N 1N中枚举一个数的倍数和 1 − N 1-N 1N中枚举一个数的因子是等价的所以,我们可以把枚举 d d d的倍数改为枚举 T T T的因子,那么就有
= ∑ T = 1 N ∑ d ∣ T d μ ( T d ) ⌊ n T ⌋ ⌊ m T ⌋ =\sum_{T=1}^N\sum_{d|T}d\mu(\frac{T}{d})\left \lfloor \frac{n}{T} \right \rfloor\left \lfloor \frac{m}{T} \right \rfloor =T=1NdTdμ(dT)TnTm
如果你知道狄利克雷卷积的话会发现 ∑ d ∣ T d μ ( T d ) \sum_{d|T}d\mu(\frac{T}{d}) dTdμ(dT)是一个典型的卷积形式,可知
∑ d ∣ T d μ ( T d ) = i d ∗ μ \sum_{d|T}d\mu(\frac{T}{d})=id*\mu dTdμ(dT)=idμ
其中 i d id id为单位函数 i d ( n ) = n id(n)=n id(n)=n μ \mu μ为莫比乌斯函数
h = i d ∗ μ h=id*\mu h=idμ
已知 μ ∗ I = e \mu*I=e μI=e其中 e e e为元函数 e ( n ) = [ n = = 1 ] e(n)=[n==1] e(n)=[n==1] I I I为恒等函数 I ( n ) = 1 I(n)=1 I(n)=1
那么有
h ∗ I = i d ∗ μ ∗ I h*I=id*\mu*I hI=idμI
h ∗ I = i d ∗ e h*I=id*e hI=ide
h ∗ I = i d h*I=id hI=id
又有 φ ∗ I = i d \varphi*I=id φI=id,所以 h = φ h=\varphi h=φ φ \varphi φ为欧拉函数,那么原式有
= ∑ T = 1 N φ ( T ) ⌊ n T ⌋ ⌊ m T ⌋ =\sum_{T=1}^N\varphi(T)\left \lfloor \frac{n}{T} \right \rfloor\left \lfloor \frac{m}{T} \right \rfloor =T=1Nφ(T)TnTm
欧拉函数前缀和可以用杜教筛求得所以总的时间复杂度就可以在 O ( n 2 3 ) O(n^{\frac{2}{3}}) O(n32)内解决了

推荐的题目有1237 最大公约数之和 V3

#include
#include 
using namespace std;
typedef long long ll;
const int maxx=10000005;
const int mod=1000000007;
map P;
bool isP[maxx];
int prime[maxx];
int cnt;
ll phi[maxx];
ll inv=500000004;
void init()
{
    phi[1]=1;
    for(int i=2;i

你可能感兴趣的:(数论,莫比乌斯反演,杜教筛,gcd求和)