推荐系统概述

推荐系统遇上深度学

推荐系统遇上深度学习系列:

推荐系统遇上深度学习(一)--FM模型理论和实践

推荐系统遇上深度学习(二)--FFM模型理论和实践

推荐系统遇上深度学习(三)--DeepFM模型理论和实践

推荐系统遇上深度学习(四)--多值离散特征的embedding解决方案

推荐系统遇上深度学习(五)--Deep&Cross Network模型理论和实践

推荐系统遇上深度学习(六)--PNN模型理论和实践

推荐系统遇上深度学习(七)--NFM模型理论和实践

推荐系统遇上深度学习(八)--AFM模型理论和实践

推荐系统遇上深度学习(九)--评价指标AUC原理及实践

推荐系统遇上深度学习(十)--GBDT+LR融合方案实战

推荐系统遇上深度学习(十一)--神经协同过滤NCF原理及实战

推荐系统遇上深度学习(十二)--推荐系统中的EE问题及基本Bandit算法

推荐系统遇上深度学习(十三)--linUCB方法浅析及实现

推荐系统遇上深度学习(十四)--强化学习与推荐系统的强强联合

推荐系统遇上深度学习(十五)--强化学习在京东推荐中的探索

推荐系统遇上深度学习(十六)--详解推荐系统中的常用评测指标

推荐系统遇上深度学习(十七)--探秘阿里之MLR算法浅析及实现

习(十八)--探秘阿里之深度兴趣网络(DIN)浅析及实现

你可能感兴趣的:(算法)