南邮数据结构实验3.3:邻接表的初始化、撤销、边的搜索、插入、删除等操作

题目:参照程序9.6~程序9.10,编写程序,完成邻接表的初始化、撤销、边的搜索、插入、删除等操作。

部分代码:

邻接表的结构体定义:

//邻接表的结构体定义
typedef struct ENode{
    int adjVex;             //任意顶点u相邻的顶点
    ElemType w;             //边的权值
    struct ENode *nextArc;  //指向下一个边结点
}ENode;

typedef struct{
    int n;             //图的当前顶点数
    int e;             //图的当前边数
    ENode **a;         //指向一维指针数组
}LGraph;

邻接表的初始化:

//邻接表的初始化
Status Init(LGraph *lg,int nSize){
    int  i;
    lg->n = nSize;
    lg->e = 0;
    lg->a = (ENode**)malloc(nSize*sizeof(ENode*));  //动态生成长度为n的一维指针数组
    if(!lg->a) return ERROR;
    else{
        for(i = 0;i < lg->n;i ++){
            lg->a[i] = NULL;                        //将指针数组a置空
        }
        return OK;
    }
}

邻接表的撤销:

//邻接表的撤销(改成了int型,有返回值)
int Destory(LGraph *lg){
    int i;
    ENode *p,*q;
    for(i = 0;i < lg->n;i ++){
        p = lg->a[i];                 //指针p指向顶点i的单链表的第一个边结点
        q = p;
        while(p){                     //释放顶点i的单链表中所有边结点
            p = p->nextArc;
            free(q);
            q = p;
        }
    }
    free(lg->a);                     //释放一维指针数组a的存储空间
    return 1;                        //改为int型函数,有返回值
}

邻接表的搜索边:

//邻接表的搜索边
Status Exist(LGraph *lg,int u,int v){
    ENode *p;
    if(u < 0||v < 0||u > lg->n-1 ||v > lg->n-1 ||u == v) return ERROR;
    p = lg->a[u];                   //指针p指向顶点u的单链表的第一个边结点
    while(p!=NULL && p->adjVex != v){
        p = p->nextArc;
    }
    if(!p) return ERROR;            //若未找到此边,则返回ERROR
    else return OK;
}

邻接表的插入边:

//邻接表的插入边
Status Insert(LGraph *lg,int u,int v,ElemType w){
    ENode *p;
    if(u < 0||v < 0||u > lg->n-1||v > lg->n-1 ||u == v) return ERROR;
    if(Exist(lg,u,v)) return Duplicate;  //此边已存在,返回错误
    p = (ENode*)malloc(sizeof(ENode));   //为新的边结点分配存储空间
    p->adjVex = v;
    p->w = w;
    p -> nextArc = lg->a[u];             //将新的边结点插入单链表的最前面
    lg->a[u] = p;
    lg->e ++;                            //边加1
    return OK;
}

邻接表的删除边:

//邻接表的删除边
Status Remove(LGraph *lg,int u,int v){
    ENode *p,*q;
    if(u < 0||v < 0||u > lg->n-1||v > lg->n-1 ||u == v) return ERROR;
    p = lg->a[u];
    q = NULL;
    while(p && p->adjVex != v){         //查找待删除边是否存在
        q = p;
        p = p->nextArc;
    }
    if(!p) return NotPresent;          //p为空,待删除边不存在
    if(q) q->nextArc = p->nextArc;     //从单链表删除此边
    else lg->a[u] = p->nextArc;
    free(p);
    lg->e --;
    return OK;
}

完整程序:

#include
#include
#include 
#define ERROR 0
#define OK 1
#define Overflow 2     //表示上溢
#define Underflow 3    //表示下溢
#define NotPresent 4   //表示元素不存在
#define Duplicate 5    //表示有重复元素
typedef int ElemType;
typedef int Status;


//邻接表的结构体定义
typedef struct ENode{
    int adjVex;             //任意顶点u相邻的顶点
    ElemType w;             //边的权值
    struct ENode *nextArc;  //指向下一个边结点
}ENode;

typedef struct{
    int n;             //图的当前顶点数
    int e;             //图的当前边数
    ENode **a;         //指向一维指针数组
}LGraph;


//邻接表的初始化
Status Init(LGraph *lg,int nSize){
    int  i;
    lg->n = nSize;
    lg->e = 0;
    lg->a = (ENode**)malloc(nSize*sizeof(ENode*));  //动态生成长度为n的一维指针数组
    if(!lg->a) return ERROR;
    else{
        for(i = 0;i < lg->n;i ++){
            lg->a[i] = NULL;                        //将指针数组a置空
        }
        return OK;
    }
}


//邻接表的撤销(改成了int型,有返回值)
int Destory(LGraph *lg){
    int i;
    ENode *p,*q;
    for(i = 0;i < lg->n;i ++){
        p = lg->a[i];                 //指针p指向顶点i的单链表的第一个边结点
        q = p;
        while(p){                     //释放顶点i的单链表中所有边结点
            p = p->nextArc;
            free(q);
            q = p;
        }
    }
    free(lg->a);                     //释放一维指针数组a的存储空间
    return 1;                        //改为int型函数,有返回值
}


//邻接表的搜索边
Status Exist(LGraph *lg,int u,int v){
    ENode *p;
    if(u < 0||v < 0||u > lg->n-1 ||v > lg->n-1 ||u == v) return ERROR;
    p = lg->a[u];                   //指针p指向顶点u的单链表的第一个边结点
    while(p!=NULL && p->adjVex != v){
        p = p->nextArc;
    }
    if(!p) return ERROR;            //若未找到此边,则返回ERROR
    else return OK;
}


//邻接表的插入边
Status Insert(LGraph *lg,int u,int v,ElemType w){
    ENode *p;
    if(u < 0||v < 0||u > lg->n-1||v > lg->n-1 ||u == v) return ERROR;
    if(Exist(lg,u,v)) return Duplicate;  //此边已存在,返回错误
    p = (ENode*)malloc(sizeof(ENode));   //为新的边结点分配存储空间
    p->adjVex = v;
    p->w = w;
    p -> nextArc = lg->a[u];             //将新的边结点插入单链表的最前面
    lg->a[u] = p;
    lg->e ++;                            //边加1
    return OK;
}


//邻接表的删除边
Status Remove(LGraph *lg,int u,int v){
    ENode *p,*q;
    if(u < 0||v < 0||u > lg->n-1||v > lg->n-1 ||u == v) return ERROR;
    p = lg->a[u];
    q = NULL;
    while(p && p->adjVex != v){         //查找待删除边是否存在
        q = p;
        p = p->nextArc;
    }
    if(!p) return NotPresent;          //p为空,待删除边不存在
    if(q) q->nextArc = p->nextArc;     //从单链表删除此边
    else lg->a[u] = p->nextArc;
    free(p);
    lg->e --;
    return OK;
}



int main(){
    LGraph g;
    int i,u,v,enode,edge;
    ElemType w;
    printf("Please enter the number of the ENodes:");
    scanf("%d",&enode);
    Init(&g,enode);
    printf("Please enter the number of the edges:");
    scanf("%d",&edge);
    printf("Now init the graph.\n");
    for(i = 0;i < edge;i ++){
        printf("Please enter the edge:");
        scanf("%d%d%d",&u,&v,&w);
        Insert(&g,u,v,w);
    }
    //delete one edge
    printf("Please enter the deleted edge:");
    printf("\nPlease enter the u of the edge:");
    scanf("%d",&u);
    printf("Please enter the v of the edge:");
    scanf("%d",&v);
    printf("Now search the edge:");
    if(Exist(&g,u,v)) printf("OK");
    else printf("ERROR");
    printf("\nNow delete the edge:");
    //search the deleted edge
    if(Remove(&g,u,v)) printf("OK");
    else printf("ERROR");
    //destory
    printf("\nNow destory the graph:");
    if(Destory(&g)) printf("OK");
    else printf("ERROR");
    return 0;
}

实验结果:

南邮数据结构实验3.3:邻接表的初始化、撤销、边的搜索、插入、删除等操作_第1张图片

版权声明:本文为博主原创文章,未经博主允许不得转载。

你可能感兴趣的:(#,数据结构,南邮实验报告)