参数估计与假设检验的通俗理解

文章目录

    • 参数估计
    • 假设检验

参数估计

For 高手:
参数估计(parameter estimation),统计推断的一种。根据从总体中抽取的随机样本来估计总体分布中未知参数的过程。从估计形式看,区分为点估计与区间估计:从构造估计量的方法讲,有矩法估计、最小二乘估计、似然估计、贝叶斯估计等。要处理两个问题:(1)求出未知参数的估计量;(2)在一定信度(可靠程度)下指出所求的估计量的精度。信度一般用概率表示,如可信程度为95%;精度用估计量与被估参数(或待估参数)之间的接近程度或误差来度量。
For 小白:
人们常常需要根据手中的数据,分析或推断数据反映的本质规律。即根据样本数据如何选择统计量去推断总体的分布或数字特征等。统计推断是数理统计研究的核心问题。所谓统计推断是指根据样本对总体分布或分布的数字特征等作出合理的推断。它是统计推断的一种基本形式,是数理统计学的一个重要分支,分为点估计和区间估计两部分。
For me:
也就是说通常情况下我们只能拿到一个样本空间的数据,也就是部分数据,也就相当于是从总体中随机采样的数据。但是我们如何能知道全部数据,或者说总体的数据分布情况呢?这时候就是逆过程,由样本数据逆推断总体的数据服从的分布,以及其关键参数的取值。

假设检验

For 高手:
假设检验(hypothesis testing),又称统计假设检验,是用来判断样本与样本、样本与总体的差异是由抽样误差引起还是本质差别造成的统计推断方法。显著性检验是假设检验中最常用的一种方法,也是一种最基本的统计推断形式,其基本原理是先对总体的特征做出某种假设,然后通过抽样研究的统计推理,对此假设应该被拒绝还是接受做出推断。常用的假设检验方法有Z检验、t检验、卡方检验、F检验等
For 小白:
假设检验的基本思想是“小概率事件”原理,其统计推断方法是带有某种概率性质的反证法。小概率思想是指小概率事件在一次试验中基本上不会发生。反证法思想是先提出检验假设,再用适当的统计方法,利用小概率原理,确定假设是否成立。即为了检验一个假设H0是否正确,首先假定该假设H0正确,然后根据样本对假设H0做出接受或拒绝的决策。如果样本观察值导致了“小概率事件”发生,就应拒绝假设H0,否则应接受假设H0 [1] 。
For me:

  • 提出原假设与备择假设
  • 从所研究总体中出抽取一个随机样本
  • 构造检验统计量
  • 根据显著性水平确定拒绝域临界值
  • 计算检验统计量与临界值进行比较

你可能感兴趣的:(学习笔记,机器学习,机器学习,python,参数估计,假设检验)