JDK源码--2.2--LinkedList

本章介绍的是LinkedList ,主要学习方式是解读源码,将底层实现暴露给阅读者,这样学习更简单明了。

简介:LinkedList

   LinkedList 是一个继承于AbstractSequentialList的双向链表。它也可以被当作堆栈、队列或双端队列进行操作。

  默认构造函数

LinkedList()  无参

LinkedList(Collection collection)  代参

特征

LinkedList的继承关系

  java.lang.Object

  java.util.AbstractCollection

  java.util.AbstractList

  java.util.AbstractSequentialList

  java.util.LinkedList

 

public class LinkedList   extends  AbstractSequentialList 

implements List, Deque, Cloneable, java.io.Serializable {}

 

LinkedList的本质是双向链表。

   01) LinkedList继承于AbstractSequentialList,并且实现了Dequeue接口。

   02) LinkedList包含两个重要的成员:header 和 size。

   header是双向链表的表头,它是双向链表节点所对应的类Entry的实例。

   Entry中包含成员变量: previous, next, element。其中,previous是该节点的上一个节点,next是该节点的下一个节点,element是该节点所包含的值size是双向链表中节点的个数。

LinkedList 实现 List 接口,能对它进行队列操作。

   LinkedList 实现 Deque 接口,即能将LinkedList当作双端队列使用。

   LinkedList 实现了Cloneable接口,即覆盖了函数clone(),能克隆。

   LinkedList 实现java.io.Serializable接口,这意味着LinkedList支持序列化,能通过序列化去传输。

   LinkedList 是非同步的。

LinkedListAPI

boolean add(E object)

void add(int location, E object)

boolean addAll(Collection collection)

boolean addAll(int location, Collection collection)

void addFirst(E object)

void addLast(E object)

void clear()

Object clone()

boolean contains(Object object)

Iterator descendingIterator()

E element()

E get(int location)

E getFirst()

E getLast()

int indexOf(Object object)

int lastIndexOf(Object object)

ListIterator listIterator(int location)

boolean offer(E o)

boolean offerFirst(E e)

boolean offerLast(E e)

E peek()

E peekFirst()

E peekLast()

E poll()

E pollFirst()

E pollLast()

E pop()

void push(E e)

E remove()

E remove(int location)

boolean remove(Object object)

E removeFirst()

boolean removeFirstOccurrence(Object o)

E removeLast()

boolean removeLastOccurrence(Object o)

E set(int location, E object)

int size()

T[] toArray(T[] contents)

Object[] toArray()

 

源码解析

   LinkedList实际上是通过双向链表去实现的。既然是双向链表,那么它的顺序访问会非常高效,而随机访问效率比较低。

   既然LinkedList是通过双向链表的,但是它也实现了List接口{也就是说,

   它实现了get(int location)、remove(int location)等“根据索引值来获取、删除节点的函数”}。LinkedList是如何实现List的这些接口的,

   如何将“双向链表和索引值联系起来的”?

   实际原理非常简单,它就是通过一个计数索引值来实现的。

   例如,当我们调用get(int location)时,首先会比较“location”和“双向链表长度的1/2”;

   若前者大,则从链表头开始往后查找,直到location位置;否则,从链表末尾开始先前查找,直到location位置。

   这就是“双线链表和索引值联系起来”的方法。

 LinkedList

package java.util;
import java.util.function.Consumer;


//继承于AbstractSequentialList实现ListDequeCloneableSerializable
public class LinkedList<E> extends AbstractSequentialList<E>
    implements List<E>, Deque<E>, Cloneable, java.io.Serializable
{

//集合内元素个数初始化为0
    transient int size = 0;
//头指针
    transient Node<E> first;
//尾指针
    transient Node<E> last;
//无参构造函数
    public LinkedList() {
    }
//代参构造函数
    public LinkedList(Collectionextends E> c) {
        this();
        addAll(c);
    }


    private void linkFirst(E e) {
        final Node<E> f = first;
        final Node<E> newNode = new Node<>(null, e, f);
        first = newNode;
        if (f == null)
            last = newNode;
        else
            f.prev = newNode;
        size++;
        modCount++;
    }

 
    void linkLast(E e) {
        final Node<E> l = last;
        final Node<E> newNode = new Node<>(l, e, null);
        last = newNode;
        if (l == null)
            first = newNode;
        else
            l.next = newNode;
        size++;
        modCount++;
    }

    void linkBefore(E e, Node<E> succ) {
        // assert succ != null;
        final Node<E> pred = succ.prev;
        final Node<E> newNode = new Node<>(pred, e, succ);
        succ.prev = newNode;
        if (pred == null)
            first = newNode;
        else
            pred.next = newNode;
        size++;
        modCount++;
    }

   
    private E unlinkFirst(Node<E> f) {
        // assert f == first && f != null;
        final E element = f.item;
        final Node<E> next = f.next;
        f.item = null;
        f.next = null; // help GC
        first = next;
        if (next == null)
            last = null;
        else
            next.prev = null;
        size--;
        modCount++;
        return element;
    }

    private E unlinkLast(Node<E> l) {
        // assert l == last && l != null;
        final E element = l.item;
        final Node<E> prev = l.prev;
        l.item = null;
        l.prev = null; // help GC
        last = prev;
        if (prev == null)
            first = null;
        else
            prev.next = null;
        size--;
        modCount++;
        return element;
    }

    
    E unlink(Node<E> x) {
        // assert x != null;
        final E element = x.item;
        final Node<E> next = x.next;
        final Node<E> prev = x.prev;

        if (prev == null) {
            first = next;
        } else {
            prev.next = next;
            x.prev = null;
        }

        if (next == null) {
            last = prev;
        } else {
            next.prev = prev;
            x.next = null;
        }

        x.item = null;
        size--;
        modCount++;
        return element;
    }

       public E getFirst() {
        final Node<E> f = first;
        if (f == null)
            throw new NoSuchElementException();
        return f.item;
    }

 
    public E getLast() {
        final Node<E> l = last;
        if (l == null)
            throw new NoSuchElementException();
        return l.item;
    }


    public E removeFirst() {
        final Node<E> f = first;
        if (f == null)
            throw new NoSuchElementException();
        return unlinkFirst(f);
    }

    public E removeLast() {
        final Node<E> l = last;
        if (l == null)
            throw new NoSuchElementException();
        return unlinkLast(l);
    }


    public void addFirst(E e) {
        linkFirst(e);
    }


    public void addLast(E e) {
        linkLast(e);
    }

        public boolean contains(Object o) {
        return indexOf(o) != -1;
    }

       public int size() {
        return size;
    }

        public boolean add(E e) {
        linkLast(e);
        return true;
    }

     public boolean remove(Object o) {
        if (o == null) {
            for (Node<E> x = first; x != null; x = x.next) {
                if (x.item == null) {
                    unlink(x);
                    return true;
                }
            }
        } else {
            for (Node<E> x = first; x != null; x = x.next) {
                if (o.equals(x.item)) {
                    unlink(x);
                    return true;
                }
            }
        }
        return false;
    }

       public boolean addAll(Collectionextends E> c) {
        return addAll(size, c);
    }

public boolean addAll(int index, Collectionextends E> c) {
        checkPositionIndex(index);

        Object[] a = c.toArray();
        int numNew = a.length;
        if (numNew == 0)
            return false;

        Node<E> pred, succ;
        if (index == size) {
            succ = null;
            pred = last;
        } else {
            succ = node(index);
            pred = succ.prev;
        }

        for (Object o : a) {
            @SuppressWarnings("unchecked") E e = (E) o;
            Node<E> newNode = new Node<>(pred, e, null);
            if (pred == null)
                first = newNode;
            else
                pred.next = newNode;
            pred = newNode;
        }

        if (succ == null) {
            last = pred;
        } else {
            pred.next = succ;
            succ.prev = pred;
        }

        size += numNew;
        modCount++;
        return true;
    }

        public void clear() {
        for (Node<E> x = first; x != null; ) {
            Node<E> next = x.next;
            x.item = null;
            x.next = null;
            x.prev = null;
            x = next;
        }
        first = last = null;
        size = 0;
        modCount++;
    }


    // Positional Access Operations

       public E get(int index) {
        checkElementIndex(index);
        return node(index).item;
    }

       public E set(int index, E element) {
        checkElementIndex(index);
        Node<E> x = node(index);
        E oldVal = x.item;
        x.item = element;
        return oldVal;
    }

        public void add(int index, E element) {
        checkPositionIndex(index);

        if (index == size)
            linkLast(element);
        else
            linkBefore(element, node(index));
    }

      public E remove(int index) {
        checkElementIndex(index);
        return unlink(node(index));
    }

    private boolean isElementIndex(int index) {
        return index >= 0 && index < size;
    }

        private boolean isPositionIndex(int index) {
        return index >= 0 && index <= size;
    }

        private String outOfBoundsMsg(int index) {
        return "Index: "+index+", Size: "+size;
    }

    private void checkElementIndex(int index) {
        if (!isElementIndex(index))
            throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
    }

    private void checkPositionIndex(int index) {
        if (!isPositionIndex(index))
            throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
    }

        Node<E> node(int index) {
        // assert isElementIndex(index);

        if (index < (size >> 1)) {
            Node<E> x = first;
            for (int i = 0; i < index; i++)
                x = x.next;
            return x;
        } else {
            Node<E> x = last;
            for (int i = size - 1; i > index; i--)
                x = x.prev;
            return x;
        }
    }

    // Search Operations

        public int indexOf(Object o) {
        int index = 0;
        if (o == null) {
            for (Node<E> x = first; x != null; x = x.next) {
                if (x.item == null)
                    return index;
                index++;
            }
        } else {
            for (Node<E> x = first; x != null; x = x.next) {
                if (o.equals(x.item))
                    return index;
                index++;
            }
        }
        return -1;
    }

       public int lastIndexOf(Object o) {
        int index = size;
        if (o == null) {
            for (Node<E> x = last; x != null; x = x.prev) {
                index--;
                if (x.item == null)
                    return index;
            }
        } else {
            for (Node<E> x = last; x != null; x = x.prev) {
                index--;
                if (o.equals(x.item))
                    return index;
            }
        }
        return -1;
    }

       public E peek() {
        final Node<E> f = first;
        return (f == null) ? null : f.item;
    }


    public E element() {
        return getFirst();
    }

        public E poll() {
        final Node<E> f = first;
        return (f == null) ? null : unlinkFirst(f);
    }

      public E remove() {
        return removeFirst();
    }

    public boolean offer(E e) {
        return add(e);
    }

 
    public boolean offerFirst(E e) {
        addFirst(e);
        return true;
    }


    public boolean offerLast(E e) {
        addLast(e);
        return true;
    }


    public E peekFirst() {
        final Node<E> f = first;
        return (f == null) ? null : f.item;
     }

    public E peekLast() {
        final Node<E> l = last;
        return (l == null) ? null : l.item;
    }


    public E pollFirst() {
        final Node<E> f = first;
        return (f == null) ? null : unlinkFirst(f);
    }

    public E pollLast() {
        final Node<E> l = last;
        return (l == null) ? null : unlinkLast(l);
    }

    public void push(E e) {
        addFirst(e);
    }

    public E pop() {
        return removeFirst();
    }

    public boolean removeFirstOccurrence(Object o) {
        return remove(o);
    }

    public boolean removeLastOccurrence(Object o) {
        if (o == null) {
            for (Node<E> x = last; x != null; x = x.prev) {
                if (x.item == null) {
                    unlink(x);
                    return true;
                }
            }
        } else {
            for (Node<E> x = last; x != null; x = x.prev) {
                if (o.equals(x.item)) {
                    unlink(x);
                    return true;
                }
            }
        }
        return false;
    }


    public ListIterator<E> listIterator(int index) {
        checkPositionIndex(index);
        return new ListItr(index);
    }

    private class ListItr implements ListIterator<E> {
        private Node<E> lastReturned;
        private Node<E> next;
        private int nextIndex;
        private int expectedModCount = modCount;

        ListItr(int index) {
            // assert isPositionIndex(index);
            next = (index == size) ? null : node(index);
            nextIndex = index;
        }

        public boolean hasNext() {
            return nextIndex < size;
        }

        public E next() {
            checkForComodification();
            if (!hasNext())
                throw new NoSuchElementException();

            lastReturned = next;
            next = next.next;
            nextIndex++;
            return lastReturned.item;
        }

        public boolean hasPrevious() {
            return nextIndex > 0;
        }

        public E previous() {
            checkForComodification();
            if (!hasPrevious())
                throw new NoSuchElementException();

            lastReturned = next = (next == null) ? last : next.prev;
            nextIndex--;
            return lastReturned.item;
        }

        public int nextIndex() {
            return nextIndex;
        }

        public int previousIndex() {
            return nextIndex - 1;
        }

        public void remove() {
            checkForComodification();
            if (lastReturned == null)
                throw new IllegalStateException();

            Node<E> lastNext = lastReturned.next;
            unlink(lastReturned);
            if (next == lastReturned)
                next = lastNext;
            else
                nextIndex--;
            lastReturned = null;
            expectedModCount++;
        }

        public void set(E e) {
            if (lastReturned == null)
                throw new IllegalStateException();
            checkForComodification();
            lastReturned.item = e;
        }

        public void add(E e) {
            checkForComodification();
            lastReturned = null;
            if (next == null)
                linkLast(e);
            else
                linkBefore(e, next);
            nextIndex++;
            expectedModCount++;
        }

        public void forEachRemaining(Consumersuper E> action) {
            Objects.requireNonNull(action);
            while (modCount == expectedModCount && nextIndex < size) {
                action.accept(next.item);
                lastReturned = next;
                next = next.next;
                nextIndex++;
            }
            checkForComodification();
        }

        final void checkForComodification() {
            if (modCount != expectedModCount)
                throw new ConcurrentModificationException();
        }
    }

    private static class Node<E> {
        E item;
        Node<E> next;
        Node<E> prev;

        Node(Node<E> prev, E element, Node<E> next) {
            this.item = element;
            this.next = next;
            this.prev = prev;
        }
    }


    public Iterator<E> descendingIterator() {
        return new DescendingIterator();
    }

    
    private class DescendingIterator implements Iterator<E> {
        private final ListItr itr = new ListItr(size());
        public boolean hasNext() {
            return itr.hasPrevious();
        }
        public E next() {
            return itr.previous();
        }
        public void remove() {
            itr.remove();
        }
    }

    @SuppressWarnings("unchecked")
    private LinkedList<E> superClone() {
        try {
            return (LinkedList<E>) super.clone();
        } catch (CloneNotSupportedException e) {
            throw new InternalError(e);
        }
    }

    public Object clone() {
        LinkedList<E> clone = superClone();

        // Put clone into "virgin" state
        clone.first = clone.last = null;
        clone.size = 0;
        clone.modCount = 0;

        // Initialize clone with our elements
        for (Node<E> x = first; x != null; x = x.next)
            clone.add(x.item);

        return clone;
    }

    public Object[] toArray() {
        Object[] result = new Object[size];
        int i = 0;
        for (Node<E> x = first; x != null; x = x.next)
            result[i++] = x.item;
        return result;
    }

        @SuppressWarnings("unchecked")
    public <T> T[] toArray(T[] a) {
        if (a.length < size)
            a = (T[])java.lang.reflect.Array.newInstance(
                                a.getClass().getComponentType(), size);
        int i = 0;
        Object[] result = a;
        for (Node<E> x = first; x != null; x = x.next)
            result[i++] = x.item;

        if (a.length > size)
            a[size] = null;

        return a;
    }

    private static final long serialVersionUID = 876323262645176354L;

 
    private void writeObject(java.io.ObjectOutputStream s)
        throws java.io.IOException {
        // Write out any hidden serialization magic
        s.defaultWriteObject();

        // Write out size
        s.writeInt(size);

        // Write out all elements in the proper order.
        for (Node<E> x = first; x != null; x = x.next)
            s.writeObject(x.item);
    }

    
    @SuppressWarnings("unchecked")
    private void readObject(java.io.ObjectInputStream s)
        throws java.io.IOException, ClassNotFoundException {
        // Read in any hidden serialization magic
        s.defaultReadObject();

        // Read in size
        int size = s.readInt();

        // Read in all elements in the proper order.
        for (int i = 0; i < size; i++)
            linkLast((E)s.readObject());
    }


    @Override
    public Spliterator<E> spliterator() {
        return new LLSpliterator<E>(this, -1, 0);
    }

    static final class LLSpliterator<E> implements Spliterator<E> {
        static final int BATCH_UNIT = 1 << 10;  // batch array size increment
        static final int MAX_BATCH = 1 << 25;  // max batch array size;
        final LinkedList<E> list; // null OK unless traversed
        Node<E> current;      // current node; null until initialized
        int est;              // size estimate; -1 until first needed
        int expectedModCount; // initialized when est set
        int batch;            // batch size for splits

        LLSpliterator(LinkedList<E> list, int est, int expectedModCount) {
            this.list = list;
            this.est = est;
            this.expectedModCount = expectedModCount;
        }

        final int getEst() {
            int s; // force initialization
            final LinkedList<E> lst;
            if ((s = est) < 0) {
                if ((lst = list) == null)
                    s = est = 0;
                else {
                    expectedModCount = lst.modCount;
                    current = lst.first;
                    s = est = lst.size;
                }
            }
            return s;
        }

        public long estimateSize() { return (long) getEst(); }

        public Spliterator<E> trySplit() {
            Node<E> p;
            int s = getEst();
            if (s > 1 && (p = current) != null) {
                int n = batch + BATCH_UNIT;
                if (n > s)
                    n = s;
                if (n > MAX_BATCH)
                    n = MAX_BATCH;
                Object[] a = new Object[n];
                int j = 0;
                do { a[j++] = p.item; } while ((p = p.next) != null && j < n);
                current = p;
                batch = j;
                est = s - j;
                return Spliterators.spliterator(a, 0, j, Spliterator.ORDERED);
            }
            return null;
        }

        public void forEachRemaining(Consumersuper E> action) {
            Node<E> p; int n;
            if (action == null) throw new NullPointerException();
            if ((n = getEst()) > 0 && (p = current) != null) {
                current = null;
                est = 0;
                do {
                    E e = p.item;
                    p = p.next;
                    action.accept(e);
                } while (p != null && --n > 0);
            }
            if (list.modCount != expectedModCount)
                throw new ConcurrentModificationException();
        }

        public boolean tryAdvance(Consumersuper E> action) {
            Node<E> p;
            if (action == null) throw new NullPointerException();
            if (getEst() > 0 && (p = current) != null) {
                --est;
                E e = p.item;
                current = p.next;
                action.accept(e);
                if (list.modCount != expectedModCount)
                    throw new ConcurrentModificationException();
                return true;
            }
            return false;
        }

        public int characteristics() {
            return Spliterator.ORDERED | Spliterator.SIZED | Spliterator.SUBSIZED;
        }
    }

}

 

   总结:

   (01) LinkedList 实际上是通过双向链表去实现的。

   它包含一个非常重要的内部类:Entry。

   Entry是双向链表节点所对应的数据结构,它包括的属性有:当前节点所包含的值,上一个节点,下一个节点。

   (02) 从LinkedList的实现方式中可以发现,它不存在LinkedList容量不足的问题。

   (03) LinkedList的克隆函数,即是将全部元素克隆到一个新的LinkedList对象中。

   (04) LinkedList实现java.io.Serializable。

   当写入到输出流时,先写入“容量”,再依次写入“每一个节点保护的值”;

  当读出输入流时,先读取“容量”,再依次读取“每一个元素”。

   (05) 由于LinkedList实现了Deque,而Deque接口定义了在双端队列两端访问元素的方法。

   提供插入、移除和检查元素的方法。每种方法都存在两种形式:

   一种形式在操作失败时抛出异常,另一种形式返回一个特殊值(null 或 false,具体取决于操作)。

   (06) LinkedList可以作为FIFO(先进先出)的队列

   (07) LinkedList可以作为LIFO(后进先出)的栈

 

 

你可能感兴趣的:(集合框架源码)