1、split(ary, indices_or_sections, axis=0) :把一个数组从左到右按顺序切分
参数:
ary:要切分的数组
indices_or_sections:如果是一个整数,就用该数平均切分,如果是一个数组,为沿轴切分的位置(左开右闭)
axis:沿着哪个维度进行切向,默认为0,横向切分。为1时,纵向切分
>>> x = np.arange(9.0)
>>> np.split(x, 3)
[array([ 0., 1., 2.]), array([ 3., 4., 5.]), array([ 6., 7., 8.])]
>>> x = np.arange(8.0)
>>> np.split(x, [3, 5, 6, 10])
[array([ 0., 1., 2.]),
array([ 3., 4.]),
array([ 5.]),
array([ 6., 7.]),
array([], dtype=float64)]
2、(3,)的用法
m = np.arange(8.0)
n = np.split(m, (3,))
print(n)
结果:[array([0., 1., 2.]), array([3., 4., 5., 6., 7.])]
机器学习中的用法解释:
#axis=1,代表列,是要把data数据集中的所有数据按第四、五列之间分割为X集和Y集。
x, y = np.split(data, (4,), axis=1)
3、用法测试
#!/usr/bin/env python
# _*_ coding: utf-8 _*_
import numpy as np
# Test 1
A = np.arange(12).reshape(3, 4)
print A
# 纵向分割, 分成两部分, 按列分割
print np.split(A, 2, axis = 1)
# 横向分割, 分成三部分, 按行分割
print np.split(A, 3, axis = 0)
# Test 1 result
[[ 0 1 2 3]
[ 4 5 6 7]
[ 8 9 10 11]]
[array([[0, 1],
[4, 5],
[8, 9]]), array([[ 2, 3],
[ 6, 7],
[10, 11]])]
[array([[0, 1, 2, 3]]), array([[4, 5, 6, 7]]), array([[ 8, 9, 10, 11]])]
# Test 2
# 不均等分割
print np.array_split(A, 3, axis = 1)
# Test 2 result
[array([[0, 1],
[4, 5],
[8, 9]]), array([[ 2],
[ 6],
[10]]), array([[ 3],
[ 7],
[11]])]
In [5]:
# Test 3
# 垂直方向分割
print np.vsplit(A, 3)
# 水平方向分割
print np.hsplit(A, 2)
# Test 3 result
[array([[0, 1, 2, 3]]), array([[4, 5, 6, 7]]), array([[ 8, 9, 10, 11]])]
[array([[0, 1],
[4, 5],
[8, 9]]), array([[ 2, 3],
[ 6, 7],
[10, 11]])]
4、与array_split的差别:split必须要均等分,否则会报错。array_split不会
import numpy as np
x = np.arange(8.0)
print np.array_split(x,3)
print np.split(x, 3)
ValueError: array split does not result in an equal division