- 论文鉴赏:孙等人采用基于MR(Manifoldranking,流行排序)的视觉显著性目标检测方法对绿色苹果图像进行处理并生成显著图,然后通过形态学处理和边缘检测等操作实现了果实的识别。
神笔馬良
mr计算机视觉人工智能
问题描述:孙等人采用基于MR(Manifoldranking,流行排序)的视觉显著性目标检测方法对绿色苹果图像进行处理并生成显著图,然后通过形态学处理和边缘检测等操作实现了果实的识别。请问这句话中的流行排序是什么,原理是什么,干什么用的。显著图是什么结果,可以用来干什么?问题解答:"流行排序"(ManifoldRanking,简称MR)是一种用于图像处理和计算机视觉中的视觉显著性检测方法。它基于图
- BASNet:Boundary-aware salient object detection
Kun Li
应用算法目标检测计算机视觉
CVPR2019开源论文|BASNet:关注边界的显著性检测本文提出一种基于深度监督学习的前景提取构架BASNet,其在边缘感知上有优异的表现。https://mp.weixin.qq.com/s/fjq4UyDMN9Z9lvNZ7aNLWABASNet:Boundary-AwareSalientObjectDetection论文学习_basnet:boundary-awaresalientobj
- 实现稳定的联合显著性检测和联合目标分割
umbrellazg
算法python
1TitleTowardStableCo-SaliencyDetectionandObjectCo-Segmentation(BoLi;LvTang;SenyunKuang;MofeiSong;ShouhongDing)【IEEETransactionsonImageProcessing2022】2ConclusionThispaperpresentanovelmodelforsimultaneo
- 2024年显著性检测论文及代码汇总(1)
学不动了躺叭
深度学习目标检测计算机视觉
ACMMMDistortion-awareTransformerin360°SalientObjectDetectioncodeAbstacrt:现有的方法无法处理二维等矩投影引起的畸变。本文提出了一个基于Transformer的模型,即DATFormer。首先,引入两个畸变自适应模块。其一是畸变映射模块,预处理全局畸变特征;其二是畸变自适应注意力块,减少多尺度特征的局部畸变。然后,为利用360°
- 静态背景下运动目标检测 matlab_干货 | 视频显著性目标检测(文末附有完整源码)...
weixin_39747049
静态背景下运动目标检测matlab
显著性检测近年来引起了广泛的研究兴趣。这种日益流行的原因在于在各种视觉任务(如图像分割、目标检测、视频摘要和压缩等)中有效地使用了这些模型。显著性模型大致可分为两类:人眼注视预测和显著目标检测。根据输入类型,可进一步分为静态显著性模型和动态显著性模型。背景将CNN应用于视频显著性的第一个问题是缺乏足够大、标记密集的视频训练数据。据我所知,CNN在计算机视觉方面的成功在很大程度上归功于大规模标注图像
- 四元傅里叶显著性图-四元数-Matlab编程
zxchz
四元数四元傅里叶变换Matlab
3.基于四元傅里叶变换的显著性检测(Spatio-temporalSaliencyDetectionUsingPhaseSpectrumofQuaternionFourierTransform)定义t时刻的输入图像F(t)(t=1,2,...,T,T表示输入视频的总帧数),r(t)、g(t)、b(t)分别表示F(t)的红、绿、蓝三通道,则其独立的颜色通道R(红)G(绿)B(蓝)Y(黄)分别定义为:
- 图像分割实战-系列教程11:U2NET显著性检测实战3
机器学习杨卓越
图像分割实战计算机视觉人工智能语义分割图像分割unet
图像分割实战-系列教程总目录有任何问题欢迎在下面留言本篇文章的代码运行界面均在Pycharm中进行本篇文章配套的代码资源已经上传U2NET显著性检测实战1U2NET显著性检测实战2U2NET显著性检测实战36、上采样操作与REBNCONVdef_upsample_like(src,tar):src=F.upsample(src,size=tar.shape[2:],mode='bilinear')
- 图像分割实战-系列教程10:U2NET显著性检测实战2
机器学习杨卓越
图像分割实战计算机视觉语义分割实例分割人工智能图像分割
图像分割实战-系列教程总目录有任何问题欢迎在下面留言本篇文章的代码运行界面均在Pycharm中进行本篇文章配套的代码资源已经上传U2NET显著性检测实战1U2NET显著性检测实战2U2NET显著性检测实战35、残差Unet模块classRSU7(nn.Module):#UNet07DRES(nn.Module):def__init__(self,in_ch=3,mid_ch=12,out_ch=3
- echarts中toolbox增加自定义图标和事件
云隙阳光i
echartsjavascriptecmascript
1、echarts提供了丰富的图标saveAsImage保存图片restore配置项还原dataView数据视图工具dataZoom数据区域缩放magicType动态类型切换brush选择组件的控制按钮等。2、在实际开发过程中,根据需求需要自定义图标及功能echarts官方配置文档中有说明,自定义的工具名字,只能以my开头,例如myTool1,myTool2icon的设置需要通过‘image://
- Echarts自定义工具栏toolbox
白露-
Echarts笔记echartsjavascriptecmascript
1.说明toolbox:工具栏,提供操作图表的工具,可自定义2.代码//optiontoolbox:{show:true,/*是否显示工具栏组件*/itemSize:30,/*工具栏icon的大小*/feature:{/*自定义事件,注意:自定义事件必须以my开头*/myTool2:{show:true,title:'单机台设备状态查询',/*鼠标停留时的提示文字*/icon:'image://.
- Echarts返回
稚嫩的老大爷
//toolbox:{//right:40,//bottom:20,//feature:{//myTool1:{//show:this.isShowBack,//title:"返回上一级",//icon:"path://M853.333333245.333333H245.333333l93.866667-93.866666c12.8-12.812.8-34.1333330-46.933334-12
- 显著性检测算法学习阶段论文总结(1)
SH-ZZB
图像处理算法值得参考的显著性算法
因为本人研究方向是显著性检测,也就看了不少的显著性方面的文献。这篇博客是我对之前所看论文中一些较为经典,具有较大参考价值的论文的一个集中整理,也算是对自己学习过程的一个总结。1.GlobalContrastbasedSalientRegionDetection,Ming-mingCheng(CVPR2011)程明明的这篇基于全局颜色对比的显著性检测的论文我在上篇博客中详细介绍过,文中主要阐述了两种
- python opencv 显著图转热力图并叠加到原始图
Dr. DW
计算机视觉opencvcv深度学习图像识别
pythonopencv显著图转热力图并叠加到原始图图像分割、显著性检测通常会生成二值图或者灰度图像(mask),为了直观展示分割检测效果,通常最直接的方法就是将生成的mask基于一定透明度叠加到原始图像。本文通过pythonopencv来实现显著图转热力图并叠加到原始图,具体操作如下:1.读入分割图片和原始图片importcv2importnumpyasnpgray_img=cv2.imread
- 卷积神经网络(CNN)详解与代码实现
从0到1透视卷积神经网络的原理和应用
cnn深度学习人工智能
1.应用场景卷积神经网络的应用不可谓不广泛,主要有两大类,数据预测和图片处理。数据预测自然不需要多说,图片处理主要包含有图像分类,检测,识别,以及分割方面的应用。图像分类:场景分类,目标分类图像检测:显著性检测,物体检测,语义检测等等图像识别:人脸识别,字符识别,车牌识别,行为识别,步态识别等等图像分割:前景分割,语义分割2.卷积神经网络结构卷积神经网络主要是由输入层、卷积层、激活函数、池化层、全
- 计算机视觉
给点.
计算机视觉人工智能
目录一、图像处理maindenoise二、Harris角点检测三、Hough变换直线检测四、直方图显著性检测五、人脸识别六、kmeansimport函数kmeanstext七、神经网络常用函数:imread----------读取图像imshow---------显示图像rgb2hsv---------RGB转HSVhsv2rgb---------HSV转RGBimhist-----------显
- 2023年显著性检测论文及代码汇总(4)
看到我请叫我去学java吖
计算机视觉人工智能深度学习机器学习
ACMMMPartitionedSaliencyRankingwithDensePyramidTransformerscodeAbstacrt:显著性排序,其重点是评估实例级别的显著性程度。本文提出分区排序范式,该范式将无序的显著性实例分区,然后根据分区之间的相关性对其进行排序。分区排序范式减轻了排序的模糊性,提高了显著性排序模型的性能。除此之外,本文引入密集金字塔Transformer,实现全局
- 2018 VALSE 视觉盛宴-总结笔记
墨三
PixelLevelImageUnderstandingQuestion:1getrideofuserannotationprocess;2learnfromweb.category-agnosticcues:1显著性检测;2边缘检测;3over-segmentation,无语义标签,类似超像素,将图像分成多个区域,区域数目不固定。(关于Deepembeddinglearning《DeepEmbe
- 【CV计算机视觉深度学习】图像分类、多目标追踪、目标检测、旋转框检测、显著性检测、姿态估计、图像超分辨等等!精度评估指标解读大全(包括含义、计算、源码等,超详细~)
weixin_46031746
ML计算机视觉深度学习人工智能python目标跟踪目标检测机器学习
文章目录CV模型们的量化评估指标图像分类/ImageClassificationTop-1和Top-5多目标追踪/Multi-trackMOT精度指标的特性MOTAMOTPIDF1MT&ML&IDs举例说明目标追踪OPE:PrecisionPlot&SuccessPlotPrecisionPlotSuccessPlot鲁棒性评估TemporalRobustnessEvaluationSpatial
- 图像显著性目标检测
天马行空工作坊
图像显著性检测图像处理目标检测
一、概述1、定义图像显著性检测(SaliencyDetection,SD),指通过智能算法模拟人的视觉系统特点,预测人类的视觉凝视点和眼动,提取图像中的显著区域(即人类感兴趣的区域),可以广泛用于目标识别、图像编辑以及图像检索等领域,是计算机视觉领域关键的图像分析技术。示例如图所示,左图为原图,右图为经过显著性检测算法的结果图2、方法分类显著性目标检测主要可以分为两个阶段,分别是传统尺度空间手工特
- U2NET目标显著性检测,抠图去背景效果倍儿棒
fahaihappy
计算机视觉人工智能深度学习图像识别3d
点击上方“AI搞事情”关注我们❝论文:U^2-Net:GoingDeeperwithNestedU-StructureforSalientObjectDetectionGIT:https://github.com/NathanUA/U-2-Net❞U2Net用于显著目标检测(SalientObjectDetection,SOD),目的是分割出图像中最具吸引力的目标。不同于图像识别,SOD更注重局部
- 论文阅读——Pyramid Grafting Network for One-Stage High Resolution Saliency Detection
醋酸洋红就是我
论文阅读
目录基本信息标题目前存在的问题改进网络结构CMGM模块解答为什么要用这两个编码器进行编码另一个写的好的参考基本信息期刊CVPR年份2022论文地址https://arxiv.org/pdf/2204.05041.pdf代码地址https://github.com/iCVTEAM/PGNet标题金字塔嫁接网络的一级高分辨率显著性检测目前存在的问题cosod用于低分辨率图片下表现良好,高分辨率下(10
- 2023年显著性检测论文及代码汇总
看到我请叫我去学java吖
计算机视觉人工智能深度学习
AAAILeNo:AdversarialRobustSalientObjectDetectionNetworkswithLearnableNoiseAbstacrt:目前很少有SOD模型对人类视觉注意力难以察觉的对抗性攻击具有鲁棒性。先前的鲁棒显著性ROSA对预分割的超像素进行重组,通过密集连接的条件随机场CRF对粗糙的显著性图进行细化。与先前工作中依赖预处理和后处理的ROSA不同,本文提出一种轻
- 2023年显著性检测论文及代码汇总(2)
看到我请叫我去学java吖
目标检测计算机视觉机器学习
ACMMMRecurrentMulti-scaleTransformerforHigh-ResolutionSalientObjectDetectioncodeAbstacrt:现有的HRSOD方法没有足够大规模的数据集用于训练和评估,且会产生不完整的目标区域和不规则的目标边界。本文提出了一个新的HRS10K数据集,包含10500个2K-8K分辨率的高质量标注图像。同时,本文提出一个新的循环多尺度
- 2023年显著性检测论文及代码汇总(3)
看到我请叫我去学java吖
计算机视觉人工智能机器学习
ACMMMPoint-awareInteractionandCNN-inducedRefinementNetworkforRGB-DSalientObjectDetectioncodeAbstacrt:近年来,CNN在特征提取和跨模态交互中得到了充分的利用,但在自模态和跨模态的全局远程依赖关系建模方面仍存在不足。因此,本文引入了CNN辅助的Transformer架构,并提出了点感知交互和CNN诱导
- 使用显著性检测的可见光和红外图像的两尺度图像融合(Matlab代码实现)
长安程序猿
matlab计算机视觉人工智能
欢迎来到本博客❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。本文目录如下:目录1概述2运行结果3参考文献4Matlab代码及文献1概述文献:军事、导航和隐藏武器探测需要不同的成像模式,如可见光和红外光,以监测目标场景。这些方式提供了补充信息。为了更好地感知态势,必须将这些图像的补充信息集成到单个图像中。图像融合是将互补的源信息集成到合成图像中的
- 显著性检测数据集—学习笔记
studyeboy
显著性检测数据集
文章目录DUT-OMRONDUTSHKU-ISECSSD/CSSDSODPASCAL-S参考资料DUT-OMRON数据集包含5168张图像,最大边长为400像素,数据集中具有一个或多个显著对象和相对复杂的背景,具有眼睛固定、边界框和像素方面的大规模真实标注的数据集。论文:C.Yang,L.Zhang,H.Lu,X.Ruan,andM.-H.Yang,"Saliencydetectionviagra
- makefile菜鸟入门
shuizhizhiyin
Cmakefile
转自:http://my.oschina.net/u/1413984/blog/199029Makefile有三个非常有用的变量。分别是$@,$^,$<代表的意义分别是:假设我们有下面这样的一个程序,源代码如下:/* main.c */ #include "mytool1.h" #include "mytool2.h" int main(int argc,char **argv) { mytool
- js商城项目——轮播图
璃小灯吖
本前端小白最近在学习js的基础知识,下面记录下一个轮播图的具体写法思路。1、具体实现效果图2、主要涉及知识要点获取元素节点进行Dom事件操作offset家族获取元素的宽高值定时器的应用缓动动画的封装3、轮播图实现思路方法1)获取需要的标签元素//1.获取需要的标签varcasualContent=myTool.$('casual_content');varcontentImg=casualCont
- 在vue中导入第三方js文件
简公孙策
在html文件中通过方式引入,全局使用(通常保存在public文件夹下)。在main.js文件中通过import'./assets/js/myTool'的方式引入,全局使用在vue组件中通过import'../../assets/js/myTool'的方式引入,在当前组件中使用修改js文件代码,通过export或exportdefault导入指定变量,在组件中通过import{xx,xxx}fro
- 商品类目横向滚动
SorrySir
效果如下。商品类目横向滚动源码在:https://github.com/Sorry-Sir/MyTool选择自己想要的组件框架,请在Tool文件夹内找到对应封装好的组件框架,拖入到自己的项目中,看是否需要HXJBasicSetting.h中的宏,如需要,在导入PCH文件夹中HXJBasicSetting.h即可使用。
- Java实现的简单双向Map,支持重复Value
superlxw1234
java双向map
关键字:Java双向Map、DualHashBidiMap
有个需求,需要根据即时修改Map结构中的Value值,比如,将Map中所有value=V1的记录改成value=V2,key保持不变。
数据量比较大,遍历Map性能太差,这就需要根据Value先找到Key,然后去修改。
即:既要根据Key找Value,又要根据Value
- PL/SQL触发器基础及例子
百合不是茶
oracle数据库触发器PL/SQL编程
触发器的简介;
触发器的定义就是说某个条件成立的时候,触发器里面所定义的语句就会被自动的执行。因此触发器不需要人为的去调用,也不能调用。触发器和过程函数类似 过程函数必须要调用,
一个表中最多只能有12个触发器类型的,触发器和过程函数相似 触发器不需要调用直接执行,
触发时间:指明触发器何时执行,该值可取:
before:表示在数据库动作之前触发
- [时空与探索]穿越时空的一些问题
comsci
问题
我们还没有进行过任何数学形式上的证明,仅仅是一个猜想.....
这个猜想就是; 任何有质量的物体(哪怕只有一微克)都不可能穿越时空,该物体强行穿越时空的时候,物体的质量会与时空粒子产生反应,物体会变成暗物质,也就是说,任何物体穿越时空会变成暗物质..(暗物质就我的理
- easy ui datagrid上移下移一行
商人shang
js上移下移easyuidatagrid
/**
* 向上移动一行
*
* @param dg
* @param row
*/
function moveupRow(dg, row) {
var datagrid = $(dg);
var index = datagrid.datagrid("getRowIndex", row);
if (isFirstRow(dg, row)) {
- Java反射
oloz
反射
本人菜鸟,今天恰好有时间,写写博客,总结复习一下java反射方面的知识,欢迎大家探讨交流学习指教
首先看看java中的Class
package demo;
public class ClassTest {
/*先了解java中的Class*/
public static void main(String[] args) {
//任何一个类都
- springMVC 使用JSR-303 Validation验证
杨白白
springmvc
JSR-303是一个数据验证的规范,但是spring并没有对其进行实现,Hibernate Validator是实现了这一规范的,通过此这个实现来讲SpringMVC对JSR-303的支持。
JSR-303的校验是基于注解的,首先要把这些注解标记在需要验证的实体类的属性上或是其对应的get方法上。
登录需要验证类
public class Login {
@NotEmpty
- log4j
香水浓
log4j
log4j.rootCategory=DEBUG, STDOUT, DAILYFILE, HTML, DATABASE
#log4j.rootCategory=DEBUG, STDOUT, DAILYFILE, ROLLINGFILE, HTML
#console
log4j.appender.STDOUT=org.apache.log4j.ConsoleAppender
log4
- 使用ajax和history.pushState无刷新改变页面URL
agevs
jquery框架Ajaxhtml5chrome
表现
如果你使用chrome或者firefox等浏览器访问本博客、github.com、plus.google.com等网站时,细心的你会发现页面之间的点击是通过ajax异步请求的,同时页面的URL发生了了改变。并且能够很好的支持浏览器前进和后退。
是什么有这么强大的功能呢?
HTML5里引用了新的API,history.pushState和history.replaceState,就是通过
- centos中文乱码
AILIKES
centosOSssh
一、CentOS系统访问 g.cn ,发现中文乱码。
于是用以前的方式:yum -y install fonts-chinese
CentOS系统安装后,还是不能显示中文字体。我使用 gedit 编辑源码,其中文注释也为乱码。
后来,终于找到以下方法可以解决,需要两个中文支持的包:
fonts-chinese-3.02-12.
- 触发器
baalwolf
触发器
触发器(trigger):监视某种情况,并触发某种操作。
触发器创建语法四要素:1.监视地点(table) 2.监视事件(insert/update/delete) 3.触发时间(after/before) 4.触发事件(insert/update/delete)
语法:
create trigger triggerName
after/before 
- JS正则表达式的i m g
bijian1013
JavaScript正则表达式
g:表示全局(global)模式,即模式将被应用于所有字符串,而非在发现第一个匹配项时立即停止。 i:表示不区分大小写(case-insensitive)模式,即在确定匹配项时忽略模式与字符串的大小写。 m:表示
- HTML5模式和Hashbang模式
bijian1013
JavaScriptAngularJSHashbang模式HTML5模式
我们可以用$locationProvider来配置$location服务(可以采用注入的方式,就像AngularJS中其他所有东西一样)。这里provider的两个参数很有意思,介绍如下。
html5Mode
一个布尔值,标识$location服务是否运行在HTML5模式下。
ha
- [Maven学习笔记六]Maven生命周期
bit1129
maven
从mvn test的输出开始说起
当我们在user-core中执行mvn test时,执行的输出如下:
/software/devsoftware/jdk1.7.0_55/bin/java -Dmaven.home=/software/devsoftware/apache-maven-3.2.1 -Dclassworlds.conf=/software/devs
- 【Hadoop七】基于Yarn的Hadoop Map Reduce容错
bit1129
hadoop
运行于Yarn的Map Reduce作业,可能发生失败的点包括
Task Failure
Application Master Failure
Node Manager Failure
Resource Manager Failure
1. Task Failure
任务执行过程中产生的异常和JVM的意外终止会汇报给Application Master。僵死的任务也会被A
- 记一次数据推送的异常解决端口解决
ronin47
记一次数据推送的异常解决
需求:从db获取数据然后推送到B
程序开发完成,上jboss,刚开始报了很多错,逐一解决,可最后显示连接不到数据库。机房的同事说可以ping 通。
自已画了个图,逐一排除,把linux 防火墙 和 setenforce 设置最低。
service iptables stop
- 巧用视错觉-UI更有趣
brotherlamp
UIui视频ui教程ui自学ui资料
我们每个人在生活中都曾感受过视错觉(optical illusion)的魅力。
视错觉现象是双眼跟我们开的一个玩笑,而我们往往还心甘情愿地接受我们看到的假象。其实不止如此,视觉错现象的背后还有一个重要的科学原理——格式塔原理。
格式塔原理解释了人们如何以视觉方式感觉物体,以及图像的结构,视角,大小等要素是如何影响我们的视觉的。
在下面这篇文章中,我们首先会简单介绍一下格式塔原理中的基本概念,
- 线段树-poj1177-N个矩形求边长(离散化+扫描线)
bylijinnan
数据结构算法线段树
package com.ljn.base;
import java.util.Arrays;
import java.util.Comparator;
import java.util.Set;
import java.util.TreeSet;
/**
* POJ 1177 (线段树+离散化+扫描线),题目链接为http://poj.org/problem?id=1177
- HTTP协议详解
chicony
http协议
引言
- Scala设计模式
chenchao051
设计模式scala
Scala设计模式
我的话: 在国外网站上看到一篇文章,里面详细描述了很多设计模式,并且用Java及Scala两种语言描述,清晰的让我们看到各种常规的设计模式,在Scala中是如何在语言特性层面直接支持的。基于文章很nice,我利用今天的空闲时间将其翻译,希望大家能一起学习,讨论。翻译
- 安装mysql
daizj
mysql安装
安装mysql
(1)删除linux上已经安装的mysql相关库信息。rpm -e xxxxxxx --nodeps (强制删除)
执行命令rpm -qa |grep mysql 检查是否删除干净
(2)执行命令 rpm -i MySQL-server-5.5.31-2.el
- HTTP状态码大全
dcj3sjt126com
http状态码
完整的 HTTP 1.1规范说明书来自于RFC 2616,你可以在http://www.talentdigger.cn/home/link.php?url=d3d3LnJmYy1lZGl0b3Iub3JnLw%3D%3D在线查阅。HTTP 1.1的状态码被标记为新特性,因为许多浏览器只支持 HTTP 1.0。你应只把状态码发送给支持 HTTP 1.1的客户端,支持协议版本可以通过调用request
- asihttprequest上传图片
dcj3sjt126com
ASIHTTPRequest
NSURL *url =@"yourURL";
ASIFormDataRequest*currentRequest =[ASIFormDataRequest requestWithURL:url];
[currentRequest setPostFormat:ASIMultipartFormDataPostFormat];[currentRequest se
- C语言中,关键字static的作用
e200702084
C++cC#
在C语言中,关键字static有三个明显的作用:
1)在函数体,局部的static变量。生存期为程序的整个生命周期,(它存活多长时间);作用域却在函数体内(它在什么地方能被访问(空间))。
一个被声明为静态的变量在这一函数被调用过程中维持其值不变。因为它分配在静态存储区,函数调用结束后并不释放单元,但是在其它的作用域的无法访问。当再次调用这个函数时,这个局部的静态变量还存活,而且用在它的访
- win7/8使用curl
geeksun
win7
1. WIN7/8下要使用curl,需要下载curl-7.20.0-win64-ssl-sspi.zip和Win64OpenSSL_Light-1_0_2d.exe。 下载地址:
http://curl.haxx.se/download.html 请选择不带SSL的版本,否则还需要安装SSL的支持包 2. 可以给Windows增加c
- Creating a Shared Repository; Users Sharing The Repository
hongtoushizi
git
转载自:
http://www.gitguys.com/topics/creating-a-shared-repository-users-sharing-the-repository/ Commands discussed in this section:
git init –bare
git clone
git remote
git pull
git p
- Java实现字符串反转的8种或9种方法
Josh_Persistence
异或反转递归反转二分交换反转java字符串反转栈反转
注:对于第7种使用异或的方式来实现字符串的反转,如果不太看得明白的,可以参照另一篇博客:
http://josh-persistence.iteye.com/blog/2205768
/**
*
*/
package com.wsheng.aggregator.algorithm.string;
import java.util.Stack;
/**
- 代码实现任意容量倒水问题
home198979
PHP算法倒水
形象化设计模式实战 HELLO!架构 redis命令源码解析
倒水问题:有两个杯子,一个A升,一个B升,水有无限多,现要求利用这两杯子装C
- Druid datasource
zhb8015
druid
推荐大家使用数据库连接池 DruidDataSource. http://code.alibabatech.com/wiki/display/Druid/DruidDataSource DruidDataSource经过阿里巴巴数百个应用一年多生产环境运行验证,稳定可靠。 它最重要的特点是:监控、扩展和性能。 下载和Maven配置看这里: http
- 两种启动监听器ApplicationListener和ServletContextListener
spjich
javaspring框架
引言:有时候需要在项目初始化的时候进行一系列工作,比如初始化一个线程池,初始化配置文件,初始化缓存等等,这时候就需要用到启动监听器,下面分别介绍一下两种常用的项目启动监听器
ServletContextListener
特点: 依赖于sevlet容器,需要配置web.xml
使用方法:
public class StartListener implements
- JavaScript Rounding Methods of the Math object
何不笑
JavaScriptMath
The next group of methods has to do with rounding decimal values into integers. Three methods — Math.ceil(), Math.floor(), and Math.round() — handle rounding in differen