转载:http://www.cnblogs.com/lutingting/p/5240629.html
注:卷积层默认stride为1
在caffe中,网络的结构由prototxt文件中给出,由一些列的Layer(层)组成,常用的层如:数据加载层、卷积操作层、pooling层、非线性变换层、内积运算层、归一化层、损失计算层等;本篇主要介绍卷积层
参考
下面首先给出卷积层的结构设置的一个小例子(定义在.prototxt文件中)
layer {
name: "conv1" // 该层的名字
type: "Convolution" // 该层的类型,具体地,可选的类型有:Convolution、
bottom: "data" // 该层的输入数据Blob的名字
top: "conv1" // 该层的输出数据Blob的名字
// 该层的权值和偏置相关参数
param {
lr_mult: 1 //weight的学习率
}
param {
lr_mult: 2 // bias的学习率
}
// 该层(卷积层)的卷积运算相关的参数
convolution_param {
num_output: 20
kernel_size: 5
stride: 1
weight_filler {
type: "xavier" // weights初始化方法
}
bias_filler {
type: "constant" // bias初始化方法
}
}
}
注:在caffe的原始proto文件中,关于卷积层的参数ConvolutionPraram定义如下:
message ConvolutionParameter {
optional uint32 num_output = 1; // The number of outputs for the layer
optional bool bias_term = 2 [default = true]; // whether to have bias terms
// Pad, kernel size, and stride are all given as a single value for equal dimensions in all spatial dimensions, or once per spatial dimension.
repeated uint32 pad = 3; // The padding size; defaults to 0
repeated uint32 kernel_size = 4; // The kernel size
repeated uint32 stride = 6; // The stride; defaults to 1
// Factor used to dilate the kernel, (implicitly) zero-filling the resulting holes. (Kernel dilation is sometimes referred to by its use in the algorithme à trous from Holschneider et al. 1987.)
repeated uint32 dilation = 18; // The dilation; defaults to 1
// For 2D convolution only, the *_h and *_w versions may also be used to specify both spatial dimensions.
optional uint32 pad_h = 9 [default = 0]; // The padding height (2D only)
optional uint32 pad_w = 10 [default = 0]; // The padding width (2D only)
optional uint32 kernel_h = 11; // The kernel height (2D only)
optional uint32 kernel_w = 12; // The kernel width (2D only)
optional uint32 stride_h = 13; // The stride height (2D only)
optional uint32 stride_w = 14; // The stride width (2D only)
optional uint32 group = 5 [default = 1]; // The group size for group conv
optional FillerParameter weight_filler = 7; // The filler for the weight
optional FillerParameter bias_filler = 8; // The filler for the bias
enum Engine {
DEFAULT = 0;
CAFFE = 1;
CUDNN = 2;
}
optional Engine engine = 15 [default = DEFAULT];
// The axis to interpret as "channels" when performing convolution.
// Preceding dimensions are treated as independent inputs;
// succeeding dimensions are treated as "spatial".
// With (N, C, H, W) inputs, and axis == 1 (the default), we perform
// N independent 2D convolutions, sliding C-channel (or (C/g)-channels, for
// groups g>1) filters across the spatial axes (H, W) of the input.
// With (N, C, D, H, W) inputs, and axis == 1, we perform
// N independent 3D convolutions, sliding (C/g)-channels
// filters across the spatial axes (D, H, W) of the input.
optional int32 axis = 16 [default = 1];
// Whether to force use of the general ND convolution, even if a specific
// implementation for blobs of the appropriate number of spatial dimensions
// is available. (Currently, there is only a 2D-specific convolution
// implementation; for input blobs with num_axes != 2, this option is
// ignored and the ND implementation will be used.)
optional bool force_nd_im2col = 17 [default = false];
}
接下来,分别对卷积层的相关参数进行说明
(根据卷积层的定义,它的学习参数应该为filter的取值和bias的取值,其他的相关参数都为hyper-paramers,在定义模型时是要给出的)
放置在param{}中
该系数用来控制学习率,在进行训练过程中,该层参数以该系数乘solver.prototxt配置文件中的base_lr的值为学习率
即学习率=lr_mult*base_lr
如果该层在结构配置文件中有两个lr_mult,则第一个表示fitler的权值学习率系数,第二个表示偏执项的学习率系数(一般情况下,偏执项的学习率系数是权值学习率系数的两倍)
放置在convoluytion_param{}中
该部分对卷积层的其他参数进行设置,有些参数为必须设置,有些参数为可选(因为可以直接使用默认值)
必须设置的参数
num_output:该卷积层的filter个数
其他可选的设置参数
stride:filter的步长,默认值为1。也可以通过stride_h和stride_w来单独设定。