opencv源码学习: getStructuringElement函数;

getStructuringElement函数归属于形态学,可以建立指定大小、形状的结构;

原型: 

/** @brief Returns a structuring element of the specified size and shape for morphological operations.

The function constructs and returns the structuring element that can be further passed to cv::erode,
cv::dilate or cv::morphologyEx. But you can also construct an arbitrary binary mask yourself and use it as
the structuring element.

@param shape Element shape that could be one of cv::MorphShapes
@param ksize Size of the structuring element.
@param anchor Anchor position within the element. The default value \f$(-1, -1)\f$ means that the
anchor is at the center. Note that only the shape of a cross-shaped element depends on the anchor
position. In other cases the anchor just regulates how much the result of the morphological
operation is shifted.
 */
CV_EXPORTS_W Mat getStructuringElement(int shape, Size ksize, Point anchor = Point(-1,-1));

源码解析:

cv::Mat cv::getStructuringElement(int shape, Size ksize, Point anchor)
{
    int i, j;
    int r = 0, c = 0;
    double inv_r2 = 0;

    CV_Assert( shape == MORPH_RECT || shape == MORPH_CROSS || shape == MORPH_ELLIPSE );        //目前支持三种形状的单元创建: 矩形, 十字形, 椭圆形;

    anchor = normalizeAnchor(anchor, ksize);                    //当默认为-1,-1时, 计算anchor;

    if( ksize == Size(1,1) )                  //当给定大小为1,1时,表明是一个点, 可以用矩形来表示;
        shape = MORPH_RECT;

    if( shape == MORPH_ELLIPSE )               //椭圆;
    {
        r = ksize.height/2;
        c = ksize.width/2;
        inv_r2 = r ? 1./((double)r*r) : 0;
    }

    Mat elem(ksize, CV_8U);

    for( i = 0; i < ksize.height; i++ )                    //对每一行,计算0,1的范围;
    {
        uchar* ptr = elem.ptr(i);
        int j1 = 0, j2 = 0;

        if( shape == MORPH_RECT || (shape == MORPH_CROSS && i == anchor.y) )        //矩形,或十字y锚点时  j2为ksize.width;
            j2 = ksize.width;
        else if( shape == MORPH_CROSS )
            j1 = anchor.x, j2 = j1 + 1;
        else                                               //椭圆;
        {
            int dy = i - r;
            if( std::abs(dy) <= r )
            {
                int dx = saturate_cast<int>(c*std::sqrt((r*r - dy*dy)*inv_r2));        //计算得到x的偏移;
                j1 = std::max( c - dx, 0 );
                j2 = std::min( c + dx + 1, ksize.width );
            }
        }

        for( j = 0; j < j1; j++ )                //从这三个for可以看出, (0,j1)之间为 0,  (j1, j2)之间为1,  (j2, ksize.width)之间为0;
            ptr[j] = 0;
        for( ; j < j2; j++ )
            ptr[j] = 1;
        for( ; j < ksize.width; j++ )
            ptr[j] = 0;
    }

    return elem;
}

 

转载于:https://www.cnblogs.com/yinwei-space/p/9833294.html

你可能感兴趣的:(人工智能)