Accepted : 67 | Submit : 354 | |
Time Limit : 2000 MS | Memory Limit : 65536 KB |
Bobo has two sequences of integers {a1,a2,…,an} and {b1,b2,…,bm}. He would like to find
Note that ⌊x⌋ denotes the maximum integer does not exceed x, and |x| denotes the absolute value of x.
The input contains at most 30 sets. For each set:
The first line contains 2 integers n,m (1≤n,m≤105).
The second line contains n integers a1,a2,…,an.
The thrid line contains m integers b1,b2,…,bm.
(ai,bi≥0,a1+a2+⋯+an,b1+b2+…,bm≤106)
For each set, an integer denotes the sum.
1 2 1 2 3 2 3 1 2 3 4 5
2 7
题解:
因为(ai,bi≥0,a1+a2+⋯+an,b1+b2+…,bm≤106) (1≤n,m≤105).
可以知道重复的数字很多
极端小的情况:平均每个数字为10
极端大的情况:平均每个数字为十的六次方
故知重复的数字很多
#include
#include
#include
#include
using namespace std;
#define mem(arr) memset(arr,0,sizeof(arr))
#define LL long long
#define N 100005
int a[N],b[N],c[N];
int k1[N],k2[N];
int main()
{
int n,m;
//freopen("in.txt","r",stdin);
while(scanf("%d%d",&n,&m)!=EOF)
{
mem(k1),mem(k2);
for(int i=1;i<=n;i++){
scanf("%d",&a[i]);
c[i]=a[i];
}
sort(a+1,a+1+n);
int cnt1=unique(a+1,a+1+n)-(a+1);///去重后的数组长度
for(int i=1;i<=n;i++)
++k1[lower_bound(a+1,a+1+cnt1,c[i])-a];///计算数组c各个数字出现的频率
///lower_bound(a+1,a+1+cnt1,c[i])-a 表示这个数字在数组a中的位置
for(int i=1;i<=m;i++){
scanf("%d",&b[i]);
c[i]=b[i];
}
sort(b+1,b+1+m);
int cnt2=unique(b+1,b+1+m)-(b+1);
for(int i=1;i<=m;i++)
++k2[lower_bound(b+1,b+1+cnt2,c[i])-b];
LL ans=0;
for(int i=1;i<=cnt1;i++){
for(int j=1;j<=cnt2;j++){
LL tmp=sqrt(abs(a[i]-b[j]));
ans+=k1[i]*k2[j]*tmp;
}
}
printf("%I64d\n",ans);
}
return 0;
}
unique函数是一个去重函数
ForwardIter lower_bound(ForwardIter first, ForwardIter last,const _Tp& val)算法返回一个非递减序列[first, last)中的第一个大于等于值val的位置
ForwardIter upper_bound(ForwardIter first, ForwardIter last, const _Tp& val)算法返回一个非递减序列[first, last)中第一个大于val的位置
lower_bound和upper_bound如下图所示:
int lower_bound(int *array, int size, int key)
{
int first = 0, middle;
int half, len;
len = size;
while(len > 0) {
half = len >> 1;
middle = first + half;
if(array[middle] < key) {
first = middle + 1;
len = len-half-1; //在右边子序列中查找
}
else
len = half; //在左边子序列(包含middle)中查找
}
return first;
}
int upper_bound(int *array, int size, int key)
{
int first = 0, len = size-1;
int half, middle;
while(len > 0){
half = len >> 1;
middle = first + half;
if(array[middle] > key) //中位数大于key,在包含last的左半边序列中查找。
len = half;
else{
first = middle + 1; //中位数小于等于key,在右半边序列中查找。
len = len - half - 1;
}
}
return first;
}