数论之路慢慢之GCD性质

题目链接

Strange Optimization

Bobo is facing a strange optimization problem. Given n,m, he is going to find a real number α such that f(12+α) is maximized, where f(t)=mini,jZ|injm+t|. Help him!

Note: It can be proved that the result is always rational.

Input

The input contains zero or more test cases and is terminated by end-of-file.

Each test case contains two integers n,m.

  • 1n,m109
  • The number of tests cases does not exceed 104.

Output

For each case, output a fraction p/q which denotes the result.

Sample Input

1 1
1 2

Sample Output

1/2
1/4

题解:

数论之路慢慢之GCD性质_第1张图片
先把i/n-j/m通分,得出(i*m-j*n)/n*m   然后显然可以提出gcd(n,m)因子
就相当于是k*gcd(n,m)/n*m,k为整数,就是个等差数列,然后就相当于去找符合条件的首项,那么由于是绝对值,,不用考虑最小边界的问题,那么容易得出首项为二分之一公差答案
这个题不要忘了化简,,还有必须I64d才能过题
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
using namespace std;
typedef long long ll;
typedef pairP;
const int INF=0x3f3f3f3f;
ll gcd(ll a,ll b)
{
    if(b==0)return a;
    return gcd(b,a%b);
}
int main()
{
    ll n,m;
    while(scanf("%I64d%I64d",&n,&m)!=EOF)
    {
        ll p=gcd(n,m);
        ll q=2*(n*m);
        ll cc=gcd(p,q);
        printf("%I64d/%I64d\n",p/cc,q/cc);
    }
    return 0;
}



你可能感兴趣的:(数学--数论)