Time Limit: 1000MS | Memory Limit: 10000K | |
Total Submissions: 9871 | Accepted: 4043 |
Description
N Transaction i Black Box contents after transaction Answer (elements are arranged by non-descending) 1 ADD(3) 0 3 2 GET 1 3 3 3 ADD(1) 1 1, 3 4 GET 2 1, 3 3 5 ADD(-4) 2 -4, 1, 3 6 ADD(2) 2 -4, 1, 2, 3 7 ADD(8) 2 -4, 1, 2, 3, 8 8 ADD(-1000) 2 -1000, -4, 1, 2, 3, 8 9 GET 3 -1000, -4, 1, 2, 3, 8 1 10 GET 4 -1000, -4, 1, 2, 3, 8 2 11 ADD(2) 4 -1000, -4, 1, 2, 2, 3, 8
Input
Output
Sample Input
7 4 3 1 -4 2 8 -1000 2 1 2 6 6
Sample Output
3 3 1 2
Source
题意:题意还是太长了,其实还是很好懂的题意,简单的说就是问你,动态查询有x个数字的数组,他第i大的数字是多少?这
题解:这里我们很容易想到使用set,map之类的,但是我想了一下,好像set不能直接查询第k大的数字呀!只能一次一的遍历呀,于是查了资料确实是不能查询,好吧查了下题解,看到2种做法,一是使用2个优先队列维护第k大的关系,第二个正是我要说的treap,treap封装了类似set,map的排序二叉树的方式维护数字的大小,除此之外,他还可以快速查找第k大的元素,查询数字x的名次,真是太方便啦!那么这一题就是treap的模板题了,这里我们的kth函数有2种查询方式,较小优先和较大优先。和set的greater和less是不是很像?
#include
#include
#include
#include
#include
using namespace std;
struct Node
{
Node *ch[2];
int r;
int v;
int s;
Node() {}
Node(int v) : v(v) {
ch[0] = ch[1] = NULL; r = rand(); s = 1;
}
bool operator < (const Node& rhs) const {
return r < rhs.r;
}
int cmp(int x) const {
if (x == v) return -1;
return x < v ? 0 : 1;
}
void maintain() {
s = 1;
if (ch[0] != NULL) s += ch[0]->s;
if (ch[1] != NULL) s += ch[1]->s;
}
};
void rotate(Node* &o, int d) {
Node* k = o->ch[d ^ 1]; o->ch[d ^ 1] = k->ch[d]; k->ch[d] = o;
o->maintain(); k->maintain(); o = k;
}
void insert(Node* &o, int x) {
if (o == NULL) {
o = new Node(x);
}
else {
int d = (x < o->v ? 0 : 1);
insert(o->ch[d], x);
if ((o->ch[d]->r) >(o->r)) rotate(o, d ^ 1);
}
o->maintain();
}
void remove(Node* &o, int x) {
int d = o->cmp(x);
if (d == -1) {
Node* u = o;
if (o->ch[0] != NULL && o->ch[1] != NULL) {
int d2 = (o->ch[0] > o->ch[1] ? 1 : 0);
rotate(o, d2); remove(o->ch[d2], x);
}
else {
if (o->ch[0] == NULL) o = o->ch[1];
else o = o->ch[0];
delete u;
}
}
else
remove(o->ch[d], x);
if (o != NULL) o->maintain();
}
int kth_small(Node* o, int k) //数字小优先
{
if (o == NULL || k <= 0 || k > o->s)
return 0;
int s = (o->ch[0] == NULL ? 0 : o->ch[0]->s);
if (k == s + 1) return o->v;
else if (k <= s) return kth_small(o->ch[0], k);
else return kth_small(o->ch[1], k - s - 1);
}
int kth_big(Node *o, int k)//数字大优先
{
if (o == NULL || k <= 0 || k > o->s)
return 0;
int s = o->ch[1] == NULL ? 0 : o->ch[1]->s;
if (s + 1 == k)
return o->v;
else {
if (s >= k)
return kth_big(o->ch[1], k);
else
return kth_big(o->ch[0], k - s - 1);
}
}
void remove_tree(Node *&o) {
if (o->ch[0] != NULL)
remove_tree(o->ch[0]);
if (o->ch[1] != NULL)
remove_tree(o->ch[1]);
delete o;
o = NULL;
}
int n, m, a[30010];
Node *rt = NULL;
int main()
{
#ifdef CDZSC
freopen("i.txt", "r", stdin);
#endif
while (scanf("%d %d", &n, &m) != EOF)
{
srand(time(0));
for (int i = 1; i <= n; i++)
scanf("%d", &a[i]);
int l = 1;
for (int i = 1; i <= m; i++)
{
int x;
scanf("%d", &x);
while (l <= x)
{
insert(rt, a[l]);
l++;
}
//for (int j = 1;j<=i;j++)
printf("%d\n", kth_small(rt, i));
//printf(" %d\n", kth_big(rt, i));
}
remove_tree(rt);
}
return 0;
}