- 基于深度学习的多模态信息检索
SEU-WYL
深度学习dnn深度学习人工智能
基于深度学习的多模态信息检索(MultimodalInformationRetrieval,MMIR)是指利用深度学习技术,从包含多种模态(如文本、图像、视频、音频等)的数据集中检索出满足用户查询意图的相关信息。这种方法不仅可以处理单一模态的数据,还可以在多种模态之间建立关联,从而更准确地满足用户需求。1.多模态信息检索的挑战异构数据表示:多模态数据通常具有不同的特征和表示形式(如文本的词嵌入与图
- 茴香豆:搭建RAG 智能助理
不才妹妹
人工智能windowslinux
RAGRAG(RetrievalAugmentedGeneration)技术,通过检索与用户输入相关的信息片段,并结合外部知识库来生成更准确、更丰富的回答。解决LLMs在处理知识密集型任务时可能遇到的挑战,如幻觉、知识过时和缺乏透明、可追溯的推理过程等。提供更准确的回答、降低推理成本、实现外部记忆。1.在茴香豆Web版中创建自己领域的知识问答助手1.1配置镜像环境进入开发机后,从官方环境复制运行I
- OPENAI中RAG实现原理以及示例代码用PYTHON来实现
dzend
aigcpython开发语言ai
OPENAI中RAG实现原理以及示例代码用PYTHON来实现1.引言在当今人工智能领域,自然语言处理(NLP)是一个非常重要的研究方向。近年来,OPENAI发布了许多创新的NLP模型,其中之一就是RAG(Retrieval-AugmentedGeneration)模型。RAG模型结合了检索和生成两种方法,可以用于生成与给定问题相关的高质量文本。本文将介绍RAG模型的实现原理,并提供使用Python
- 【AI大模型应用开发】【LangChain系列】2. 一文全览LangChain数据连接模块:从文档加载到向量检索RAG,理论+实战+细节
同学小张
大模型python人工智能langchainpython笔记经验分享promptembedding
大家好,我是【同学小张】。持续学习,持续干货输出,关注我,跟我一起学AI大模型技能。本文学习LangChain中的数据连接(Retrieval)模块。该模块提供文档加载、切分,向量存储、检索等操作的封装。最后,结合RAG基本流程、LangChainPrompt模板和输入输出模块,我们将利用LangChain实现RAG的基本流程。文章目录0.模块介绍1.Documentloaders文档加载模块1.
- python利用向量数据库chroma实现RAG检索增强生成
Cachel wood
LLM和AIGC阿里云云计算pythonflask开发语言RAGchroma
文章目录向量数据库chroma简介RAG简介RAG示例向量数据库chroma简介向量数据库chroma教程RAG简介RAG的全称是Retrieval-AugmentedGeneration,中文翻译为检索增强生成。它是一个为大模型提供外部知识源的概念,这使它们能够生成准确且符合上下文的答案,同时能够减少模型幻觉。知识更新问题最先进的LLM会接受大量的训练数据,将广泛的常识知识存储在神经网络的权重中
- Bert系列:论文阅读Rethink Training of BERT Rerankers in Multi-Stage Retrieval Pipeline
凝眸伏笔
nlp论文阅读bertrerankerretrieval
一句话总结:提出LocalizedContrastiveEstimation(LCE),来优化检索排序。摘要预训练的深度语言模型(LM)在文本检索中表现出色。基于丰富的上下文匹配信息,深度LM微调重新排序器从候选集合中找出更为关联的内容。同时,深度lm也可以用来提高搜索索引,构建更好的召回。当前的reranker方法并不能完全探索到检索结果的效果。因此,本文提出了LocalizedContrast
- WeKnow-RAG:智能自适应的检索增强生成方法
步子哥
人工智能
在当今快速发展的人工智能领域,检索增强生成(Retrieval-AugmentedGeneration,RAG)方法逐渐成为一种新兴的解决方案。CobusGreyling在他最新的文章中深入探讨了WeKnow-RAG,这一方法通过结合知识图谱和网络搜索技术,极大地提升了大型语言模型(LLMs)在复杂查询中的表现。知识图谱的力量知识图谱(KnowledgeGraphs,KGs)作为信息检索的重要工具
- 基于Spring-AI框架实现RAG增强检索(附源码)
道长不会写代码
spring人工智能java语言模型
引言随着人工智能技术的快速发展,增强检索(Retrieval-AugmentedGeneration,RAG)已成为一种结合检索和生成的先进方法,广泛应用于各种智能应用中。Spring-AI作为SpringBoot的AI扩展,提供了一套丰富的工具和库,使得开发者可以轻松地实现RAG技术。本文将介绍如何基于Spring-AI框架配置项目,并实现RAG增强检索,更多RAG增强检索的应用场景。1.实现效
- 论文:Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks
Ian_Wonder
论文阅读
论文:Retrieval-AugmentedGenerationforKnowledge-IntensiveNLPTaskscode:https://github.com/huggingface/transformerscode:https://github.com/huggingface/transformers/blob/master/model_cards/facebook/rag-toke
- 【随意搜寻】- 认知分层步速
句芒的豆腐块儿
1.失物招领当天平从“推送”向“拉取”倾斜时,广告效力不断降低,而产品设计、质量和价格的重要性日益凸显。我们需要通过交叉索引去验证信息如此多的工具和信息,在抉择之前,我们必须先知道如何搜索和该信任谁,在信息时代,跨媒体信息辨识能力是核心生活技巧。个人必须懂得何时需要信息,并且能定位、评估且有效使用所需信息。知识工作者依赖寻找、过滤、分析、创造及其他管理信息的能力获得酬劳。沟通面临的困境源于人类语言
- 人工智能领域--RAG技术
胡萝卜不甜
机器学习人工智能python学习算法
今天带大家来学习一下RAG技术,尤其在在大模型中应用广泛。一.RAG(RetrievalAugmentedGeneration)检索增强生成RAG,即Retrieval-AugmentedGeneration(检索增强的生成),是一种结合了检索(Retrieval)和生成(Generation)机制的人工智能技术,常用于提升自然语言处理(NLP)任务的性能,尤其是在问答系统、文本摘要、对话系统等领
- 深入探讨Agentic RAG(A-RAG)
lichunericli
RAG人工智能自然语言处理
原文地址:AgenticRAG:Context-AugmentedOpenAIAgents2024年3月14日原文地址:DeepDiveintoAgenticRetrievalAugmentedGeneration(A-RAG)2024年3月4日概述检索增强生成(RAG),它首先将查询输入到RAG管道中,该管道执行检索、重新排名、综合并返回响应。本文探讨了如何通过增加代理层来提高响应生成代理(RA
- 基于Hadoop的海量图像检索
usp1994
hadoopeclipse大数据
基于Hadoop的海量图像检索“MassiveImageRetrievalBasedonHadoop:AStudyinSoftwareEngineering”完整下载链接:基于Hadoop的海量图像检索文章目录基于Hadoop的海量图像检索摘要第一章引言1.1研究背景1.2研究意义1.3国内外研究现状1.4研究内容与方法1.5论文结构第二章相关技术介绍2.1Hadoop框架2.2分布式存储与计算2
- AIGC 知识:什么是 RAG? 如何使用 RAG 技术帮助我们制作自己的客户服务功能
surfirst
架构AIGC
RAG解释及其示例什么是RAG?检索增强生成(RetrievalAugmentedGeneration,RAG)是一种人工智能技术,将信息检索与文本生成相结合。以下是它的运作方式:检索:1.您提出一个问题或请求信息摘要。2.RAG在庞大的文本数据集中(文档、文章等)搜索相关信息。增强:3.RAG找到相关信息后,不会简单地将其原封不动地呈现出来。相反,它会分析内容,提取关键点,并将其与您的特定问题或
- Efficient Token-Guided Image-Text Retrieval withConsistent Multimodal Contrastive Training
ALGORITHM LOL
人工智能算法深度学习
paper:https://arxiv.org/pdf/2306.08789.pdfcode:https://github.com/LCFractal/TGDT1.论文核心思想整合了粗粒度与细粒度检索,利用了二者的优点新的训练目标:ConsistentMultimodalContrastive(CMC)loss,确保模态内和模态间语义一致性基于混合全局和局部的跨模态相似性两阶段推理方法效果:检索精
- 【DBeaver+mysql】如何在DBeaver中创建mysql服务的连接并新建数据库
hzxOnlineOk
数据库mysql
一、创建步骤1、下载安装mysql8.0(注意,安装过程会启动mysql服务,这才是能用命令行执行node处理sql语句的关键)下载地址:https://dev.mysql.com/downloads/file/?id=5264072、下载安装DBeaver数据库管理IDE3、在DBeaver中新建mysql数据库4、填写连接参数二、可能遇到的问题PublicKeyRetrievalisnotal
- RAG (Retrieval Augmented Generation)简介
juhanishen
RAGLLMaichatbot
1.背景目前大模型很多,绝大部分大模型都是通用型大模型,也就是说使用的是标准的数据,比如wikipedia,百度百科,。。。。中小型企业一般都有自己的知识库,而这些知识库的数据没有在通用型的大模型中被用到或者说训练到。如果中小型企业要适合自己本身业务需要的大模型,当然理想的方法是重新训练数据,而这些数据有其自身业务场景的数据。现实是自身训练无论是人力成本,数据成本,计算成本都是不可行的。那么一种基
- 有道开源RAG引擎 QAnything 版本更新啦
有道AI情报局
有道QAnything人工智能开源知识库问答
https://github.com/netease-youdao/QAnything近日,我们将我们的RAG(基于检索增强的生成,RetrievalAugmentedGeneration)引擎QAnything开源了,用户可以传入doc,pdf,图片,ppt,excel等各种类型的文档,就可以基于这些文档问答,像"chatgpt"一样的体验。本次开源包括了embedding,rerank,LLM
- 完蛋!我把AI喂吐了!
有道AI情报局
有道QAnything人工智能机器学习算法
当我们用RAG构建一个知识库问答应用的时候,总是希望知识库里面灌的数据越多,问答的效果越好,事实真是如此吗?这篇文章给大家答案。引言在人工智能问答系统的发展中,RAG(Retrieval-AugmentedGeneration)技术以其独特的检索增强生成方式,为减少大模型幻觉开辟了新的天地。然而,在实际落地过程中有一个很大的疑问:RAG系统,数据越多效果越好吗?本文将深入分析数据量如何影响RAG系
- RAG 新路径!提升开发效率、用户体验拉满
llmmilvusaigc
RAG(Retrieval-AugmentedGeneration)框架结合了强大的信息检索能力和生成模型的能力,允许系统从海量数据中检索相关信息,并基于这些信息生成准确、丰富的回答。随着大语言模型和智能问答技术的崛起,RAG凭借其独特的结合检索和生成能力,在提供丰富对话式体验和高效文档管理方面成为了行业的热点。然而,当前市面上的RAG框架大多仅关注后端开发,忽视了前端集成与用户交互,导致开发一个
- 我哭了你呢?《LLSS》剧场版公布新PV
二次元冒险团
《LoveLive!Sunshine!!》是由日升动画、Lantis和《电击G'smagazine》共同打造的跨媒体偶像企划“LoveLive!学园偶像计划”于2015年公布的新企划。目前原创剧场版动画《LoveLive!Sunshine!!TheSchoolIdolMovieOvertheRainbow》正在岛国电影院上映。最近官方再度公布了宣传视频,我们就一起来看看吧。《LoveLive!Su
- 2018-10-24
一曲一人听
简单的轮播图QQ图片20181025201015.jpghtml代码轮播图动漫推荐来自风平浪静的明天《来自风平浪静的明天》是由动画制作公司P.A.WORKS与漫画杂志《电击大王》合作的跨媒体企划,以陆地上与大海中进行着交流的世界为舞台,描写五位中学生和两个小学生在成长过程中经历恋爱、友情、亲情等的治愈故事。我的妹妹哥哥高坂京介(17岁)和妹妹高坂桐乃(14岁)兄妹两人的关系近几年处于冷战状态。从某
- 只需三步,搭建基于知识库的专属ChatGPT
明月出天山_
LLM实战NLPchatgpt算法语言模型RAGvLLMllama
只需三步,搭建基于知识库的专属ChatGPTMetaAI的研究人员引入了一种叫做检索增强生成(RetrievalAugmentedGeneration,RAG)的方法来完成知识密集型的任务。RAG会接受输入并检索出一组相关/支撑的文档,并给出文档的来源(例如维基百科)。这些文档作为上下文和输入的原始提示词组合,送给文本生成器得到最终的输出。RAG让语言模型不用重新训练就能够获取最新的信息,基于检索
- 《AI 大模型全栈工程师》学习笔记1 - 大模型应用的技术架构
coffee_baba
AI&大模型ai
目录1前言1.1课程链接1.2名词解释&前置知识2大模型应用的技术架构2.1Prompt-Response架构2.2Agent+FunctionCalling架构2.3RAG(Retrieval-AugmentedGeneration)架构2.4Fine-tuning架构1前言本文为知乎知学堂课程《AI大模型全栈工程师》的学习笔记,文章中涉及的一些名词解释,数据表格,流程图、框图等大都来自于课程课
- LLM之RAG实战(二十二)| LlamaIndex高级检索(一)构建完整基本RAG框架(包括RAG评估)
wshzd
RAG笔记java人工智能自然语言处理
在RAG(retrievalAugmentedGeneration,检索增强生成)系统中,检索到文本的质量对大型语言模型生成响应的质量是非常重要的。检索到的与回答用户查询相关的文本质量越高,你的答案就越有根据和相关性,也更容易防止LLM幻觉(产生错误或不基于特定领域文本的答案)。在这系列文章中,我们分三篇文章来介绍,首先会介绍LlamaIndex构建基本RAG,然后深入研究一种从小到大的高级检索技
- LangChain create_retrieval_chain的使用
hehui0921
LangChainlangchain人工智能
使用了pdf。importChatGLMfromlangchain.chainsimportLLMChainfromlangchain_core.output_parsersimportStrOutputParserfromlangchain_core.promptsimportChatPromptTemplatefromlangchain.chainsimportSimpleSequential
- 12个RAG痛点和建议解决方案
ericliu2017
RAGLLM
解决检索增强生成的核心挑战ImageadaptedfromSevenFailurePointsWhenEngineeringaRetrievalAugmentedGenerationSystem·痛点1:内容缺失·痛点2:错过了排名靠前的文件·痛点3:不在上下文中—合并策略的局限性·痛点4:未提取·痛点5:WrongFormat·痛点6:不正确的特异性·痛点7:不完整·痛点8:数据摄入可扩展性·痛
- 今日arXiv最热NLP大模型论文:引入噪声,可提升RAG检索效果超30%??
夕小瑶
自然语言处理人工智能深度学习
检索增强生成(Retrieval-AugmentedGeneration,简称RAG)系统的出现,提高了LLMs回答生成的准确性。它分为两个部分:检索与生成。检索即利用检索器从海量文档中检索出与查询最相关或者最相似的段落,而生成则是LLMs针对混合查询和检索到的文档生成响应。最近关于RAG的研究也非常多,特别是对检索组件有非常多的优秀工作。今天我们介绍的这篇文档从一个特殊的角度出发,讨论检索到的文
- 基于LlamaIndex解决RAG的关键痛点
技术狂潮AI
AI应用实战大模型企业实战LLM应用实战RAG检索增强人工智能LlamaIndex
受到Barnett等人的论文《SevenFailurePointsWhenEngineeringaRetrievalAugmentedGenerationSystem》的启发,本文将探讨论文中提到的七个痛点,以及在开发检索增强型生成(RAG)流程中常见的五个额外痛点。更为关键的是,我们将深入讨论这些RAG痛点的解决策略,使我们在日常RAG开发中能更好地应对这些挑战。这里之所以用“痛点”而非“失败点
- 12个RAG常见痛点及解决方案
deephub
人工智能语言模型RAG大语言模型
Barnett等人的论文《SevenFailurePointsWhenEngineeringaRetrievalAugmentedGenerationSystem》介绍了RAG的七个痛点,我们将其延申扩展再补充开发RAG流程中常遇到的另外五个常见问题。并且将深入研究这些RAG痛点的解决方案,这样我们能够更好地在日常的RAG开发中避免和解决这些痛点。这里使用“痛点”而不是“失败点”,主要是因为我们总
- jquery实现的jsonp掉java后台
知了ing
javajsonpjquery
什么是JSONP?
先说说JSONP是怎么产生的:
其实网上关于JSONP的讲解有很多,但却千篇一律,而且云里雾里,对于很多刚接触的人来讲理解起来有些困难,小可不才,试着用自己的方式来阐释一下这个问题,看看是否有帮助。
1、一个众所周知的问题,Ajax直接请求普通文件存在跨域无权限访问的问题,甭管你是静态页面、动态网页、web服务、WCF,只要是跨域请求,一律不准;
2、
- Struts2学习笔记
caoyong
struts2
SSH : Spring + Struts2 + Hibernate
三层架构(表示层,业务逻辑层,数据访问层) MVC模式 (Model View Controller)
分层原则:单向依赖,接口耦合
1、Struts2 = Struts + Webwork
2、搭建struts2开发环境
a>、到www.apac
- SpringMVC学习之后台往前台传值方法
满城风雨近重阳
springMVC
springMVC控制器往前台传值的方法有以下几种:
1.ModelAndView
通过往ModelAndView中存放viewName:目标地址和attribute参数来实现传参:
ModelAndView mv=new ModelAndView();
mv.setViewName="success
- WebService存在的必要性?
一炮送你回车库
webservice
做Java的经常在选择Webservice框架上徘徊很久,Axis Xfire Axis2 CXF ,他们只有一个功能,发布HTTP服务然后用XML做数据传输。
是的,他们就做了两个功能,发布一个http服务让客户端或者浏览器连接,接收xml参数并发送xml结果。
当在不同的平台间传输数据时,就需要一个都能解析的数据格式。
但是为什么要使用xml呢?不能使json或者其他通用数据
- js年份下拉框
3213213333332132
java web ee
<div id="divValue">test...</div>测试
//年份
<select id="year"></select>
<script type="text/javascript">
window.onload =
- 简单链式调用的实现技术
归来朝歌
方法调用链式反应编程思想
在编程中,我们可以经常遇到这样一种场景:一个实例不断调用它自身的方法,像一条链条一样进行调用
这样的调用你可能在Ajax中,在页面中添加标签:
$("<p>").append($("<span>").text(list[i].name)).appendTo("#result");
也可能在HQ
- JAVA调用.net 发布的webservice 接口
darkranger
webservice
/**
* @Title: callInvoke
* @Description: TODO(调用接口公共方法)
* @param @param url 地址
* @param @param method 方法
* @param @param pama 参数
* @param @return
* @param @throws BusinessException
- Javascript模糊查找 | 第一章 循环不能不重视。
aijuans
Way
最近受我的朋友委托用js+HTML做一个像手册一样的程序,里面要有可展开的大纲,模糊查找等功能。我这个人说实在的懒,本来是不愿意的,但想起了父亲以前教我要给朋友搞好关系,再加上这也可以巩固自己的js技术,于是就开始开发这个程序,没想到却出了点小问题,我做的查找只能绝对查找。具体的js代码如下:
function search(){
var arr=new Array("my
- 狼和羊,该怎么抉择
atongyeye
工作
狼和羊,该怎么抉择
在做一个链家的小项目,只有我和另外一个同事两个人负责,各负责一部分接口,我的接口写完,并全部测联调试通过。所以工作就剩下一下细枝末节的,工作就轻松很多。每天会帮另一个同事测试一些功能点,协助他完成一些业务型不强的工作。
今天早上到公司没多久,领导就在QQ上给我发信息,让我多协助同事测试,让我积极主动些,有点责任心等等,我听了这话,心里面立马凉半截,首先一个领导轻易说
- 读取android系统的联系人拨号
百合不是茶
androidsqlite数据库内容提供者系统服务的使用
联系人的姓名和号码是保存在不同的表中,不要一下子把号码查询来,我开始就是把姓名和电话同时查询出来的,导致系统非常的慢
关键代码:
1, 使用javabean操作存储读取到的数据
package com.example.bean;
/**
*
* @author Admini
- ORACLE自定义异常
bijian1013
数据库自定义异常
实例:
CREATE OR REPLACE PROCEDURE test_Exception
(
ParameterA IN varchar2,
ParameterB IN varchar2,
ErrorCode OUT varchar2 --返回值,错误编码
)
AS
/*以下是一些变量的定义*/
V1 NUMBER;
V2 nvarc
- 查看端号使用情况
征客丶
windows
一、查看端口
在windows命令行窗口下执行:
>netstat -aon|findstr "8080"
显示结果:
TCP 127.0.0.1:80 0.0.0.0:0 &
- 【Spark二十】运行Spark Streaming的NetworkWordCount实例
bit1129
wordcount
Spark Streaming简介
NetworkWordCount代码
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
- Struts2 与 SpringMVC的比较
BlueSkator
struts2spring mvc
1. 机制:spring mvc的入口是servlet,而struts2是filter,这样就导致了二者的机制不同。 2. 性能:spring会稍微比struts快。spring mvc是基于方法的设计,而sturts是基于类,每次发一次请求都会实例一个action,每个action都会被注入属性,而spring基于方法,粒度更细,但要小心把握像在servlet控制数据一样。spring
- Hibernate在更新时,是可以不用session的update方法的(转帖)
BreakingBad
Hibernateupdate
地址:http://blog.csdn.net/plpblue/article/details/9304459
public void synDevNameWithItil()
{Session session = null;Transaction tr = null;try{session = HibernateUtil.getSession();tr = session.beginTran
- 读《研磨设计模式》-代码笔记-观察者模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.List;
import java.util.Observable;
import java.util.Observer;
/**
* “观
- 重置MySQL密码
chenhbc
mysql重置密码忘记密码
如果你也像我这么健忘,把MySQL的密码搞忘记了,经过下面几个步骤就可以重置了(以Windows为例,Linux/Unix类似):
1、关闭MySQL服务
2、打开CMD,进入MySQL安装目录的bin目录下,以跳过权限检查的方式启动MySQL
mysqld --skip-grant-tables
3、新开一个CMD窗口,进入MySQL
mysql -uroot
 
- 再谈系统论,控制论和信息论
comsci
设计模式生物能源企业应用领域模型
再谈系统论,控制论和信息论
偶然看
- oracle moving window size与 AWR retention period关系
daizj
oracle
转自: http://tomszrp.itpub.net/post/11835/494147
晚上在做11gR1的一个awrrpt报告时,顺便想调整一下AWR snapshot的保留时间,结果遇到了ORA-13541这样的错误.下面是这个问题的发生和解决过程.
SQL> select * from v$version;
BANNER
-------------------
- Python版B树
dieslrae
python
话说以前的树都用java写的,最近发现python有点生疏了,于是用python写了个B树实现,B树在索引领域用得还是蛮多了,如果没记错mysql的默认索引好像就是B树...
首先是数据实体对象,很简单,只存放key,value
class Entity(object):
'''数据实体'''
def __init__(self,key,value)
- C语言冒泡排序
dcj3sjt126com
算法
代码示例:
# include <stdio.h>
//冒泡排序
void sort(int * a, int len)
{
int i, j, t;
for (i=0; i<len-1; i++)
{
for (j=0; j<len-1-i; j++)
{
if (a[j] > a[j+1]) // >表示升序
- 自定义导航栏样式
dcj3sjt126com
自定义
-(void)setupAppAppearance
{
[[UILabel appearance] setFont:[UIFont fontWithName:@"FZLTHK—GBK1-0" size:20]];
[UIButton appearance].titleLabel.font =[UIFont fontWithName:@"FZLTH
- 11.性能优化-优化-JVM参数总结
frank1234
jvm参数性能优化
1.堆
-Xms --初始堆大小
-Xmx --最大堆大小
-Xmn --新生代大小
-Xss --线程栈大小
-XX:PermSize --永久代初始大小
-XX:MaxPermSize --永久代最大值
-XX:SurvivorRatio --新生代和suvivor比例,默认为8
-XX:TargetSurvivorRatio --survivor可使用
- nginx日志分割 for linux
HarborChung
nginxlinux脚本
nginx日志分割 for linux 默认情况下,nginx是不分割访问日志的,久而久之,网站的日志文件将会越来越大,占用空间不说,如果有问题要查看网站的日志的话,庞大的文件也将很难打开,于是便有了下面的脚本 使用方法,先将以下脚本保存为 cutlog.sh,放在/root 目录下,然后给予此脚本执行的权限
复制代码代码如下:
chmo
- Spring4新特性——泛型限定式依赖注入
jinnianshilongnian
springspring4泛型式依赖注入
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- centOS安装GCC和G++
liuxihope
centosgcc
Centos支持yum安装,安装软件一般格式为yum install .......,注意安装时要先成为root用户。
按照这个思路,我想安装过程如下:
安装gcc:yum install gcc
安装g++: yum install g++
实际操作过程发现,只能有gcc安装成功,而g++安装失败,提示g++ command not found。上网查了一下,正确安装应该
- 第13章 Ajax进阶(上)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- How to determine BusinessObjects service pack and fix pack
blueoxygen
BO
http://bukhantsov.org/2011/08/how-to-determine-businessobjects-service-pack-and-fix-pack/
The table below is helpful. Reference
BOE XI 3.x
12.0.0.
y BOE XI 3.0 12.0.
x.
y BO
- Oracle里的自增字段设置
tomcat_oracle
oracle
大家都知道吧,这很坑,尤其是用惯了mysql里的自增字段设置,结果oracle里面没有的。oh,no 我用的是12c版本的,它有一个新特性,可以这样设置自增序列,在创建表是,把id设置为自增序列
create table t
(
id number generated by default as identity (start with 1 increment b
- Spring Security(01)——初体验
yang_winnie
springSecurity
Spring Security(01)——初体验
博客分类: spring Security
Spring Security入门安全认证
首先我们为Spring Security专门建立一个Spring的配置文件,该文件就专门用来作为Spring Security的配置