现代数字信号处理课后作业【第一章】


Author: Peter
Date:2020-10-09
Location:FZU


文章目录

  • 第一章
    • 1-2 判断下列序列是否为周期序列,若是,确定其周期
      • (1) x ( n ) = A c o s ( 3 π n 7 − π 8 ) x(n)=Acos\big(\dfrac{3\pi n}{7}-\dfrac{\pi}{8}\big) x(n)=Acos(73πn8π)
      • (2) x ( n ) = e j ( n 8 − π ) x(n)=e^{j\big(\dfrac{n}{8}-\pi\big)} x(n)=ej(8nπ)
    • 1-3 系统框图如下,已知边界条件为y(-1)=0,分别求出以下输入序列时的y(n),并画出图形,其中 y ( n ) = x ( n ) + 1 3 y ( n − 1 ) y(n)=x(n)+\dfrac{1}{3}y(n-1) y(n)=x(n)+31y(n1)
      • (1) x ( n ) = δ ( n ) x(n)=\delta(n) x(n)=δ(n)
      • (2) x ( n ) = u ( n ) x(n)=u(n) x(n)=u(n)
      • (3) x ( n ) = G N ( n )      N = 5 x(n)=G_N(n) \ \ \ \ N=5 x(n)=GN(n)    N=5
    • 1-4 已知线性时不变系统的单位冲激响应h(n),输入x(n),求输出序列y(n),并画出y(n)的图形
      • (1) h ( n ) = G N ( n )       x ( n ) = G N ( n )      N = 4 h(n)=G_N(n) \ \ \ \ \ x(n)=G_N(n)\ \ \ \ N=4 h(n)=GN(n)     x(n)=GN(n)    N=4
      • (2) h ( n ) = 2 n G 4 ( n )       x ( n ) = δ ( n ) − δ ( n − 2 ) h(n)=2^nG_4(n) \ \ \ \ \ x(n)=\delta(n)-\delta(n-2) h(n)=2nG4(n)     x(n)=δ(n)δ(n2)
      • (3) h ( n ) = 0. 5 n u ( n )       x ( n ) = G 5 ( n ) h(n)=0.5^nu(n) \ \ \ \ \ x(n)=G_5(n) h(n)=0.5nu(n)     x(n)=G5(n)
    • 1-7 下示每个系统中,x(n)表示激励、y(n)表示响应,判断系统是否线性,是否时变?
      • (1) y ( n ) = x ( n ) s i n ( 2 π 7 n + π 6 ) y(n)=x(n)sin(\dfrac{2\pi}{7}n+\dfrac{\pi}{6}) y(n)=x(n)sin(72πn+6π)
      • (2) y ( n ) = [ x ( n ) ] 2 y(n)=[x(n)]^2 y(n)=[x(n)]2
    • 1-9 用卷积法求系统响应y(n)
      • (1) y ( n ) = a n u ( n )     0 < a < 1 , h ( n ) = β n u ( n )     0 < β < 1 , β ≠ a y(n)=a^nu(n) \ \ \ 0y(n)=anu(n)   0<a<1,h(n)=βnu(n)   0<β<1,β=a
      • (2) x ( n ) = u ( n ) , h ( n ) = δ ( n − 2 ) − δ ( n − 3 ) x(n)=u(n),h(n)=\delta(n-2)-\delta(n-3) x(n)=u(n),h(n)=δ(n2)δ(n3)

第一章

1-2 判断下列序列是否为周期序列,若是,确定其周期

(1) x ( n ) = A c o s ( 3 π n 7 − π 8 ) x(n)=Acos\big(\dfrac{3\pi n}{7}-\dfrac{\pi}{8}\big) x(n)=Acos(73πn8π)

ω = 2 π N T = 3 π 7 \omega=\dfrac{2\pi N}{T}=\dfrac{3\pi}{7} ω=T2πN=73π

T = 14 N 3 T=\dfrac{14N}{3} T=314N

∵当N=3时,T=14为x(n)的最小周期

(2) x ( n ) = e j ( n 8 − π ) x(n)=e^{j\big(\dfrac{n}{8}-\pi\big)} x(n)=ej(8nπ)

x ( n ) = c o s ( n 8 − π ) − j s i n ( n 8 − π ) x(n)=cos(\dfrac{n}{8}-\pi)-jsin(\dfrac{n}{8}-\pi) x(n)=cos(8nπ)jsin(8nπ)

ω = 2 π N T = 1 8 \omega=\dfrac{2\pi N}{T}=\dfrac{1}{8} ω=T2πN=81

T = 16 π N T=16\pi N T=16πN

∵T中含有 π \pi π,T不能为整数

∴x(n)不是周期序列

1-3 系统框图如下,已知边界条件为y(-1)=0,分别求出以下输入序列时的y(n),并画出图形,其中 y ( n ) = x ( n ) + 1 3 y ( n − 1 ) y(n)=x(n)+\dfrac{1}{3}y(n-1) y(n)=x(n)+31y(n1)

现代数字信号处理课后作业【第一章】_第1张图片

(1) x ( n ) = δ ( n ) x(n)=\delta(n) x(n)=δ(n)

  • 时域求解零输入:
    ∵差分方程为 y ( n ) − 1 3 y ( n − 1 ) = x ( n ) y(n)-\dfrac{1}{3}y(n-1)=x(n) y(n)31y(n1)=x(n)
    ∴特征方程为 α − 1 3 = 0 \alpha-\dfrac{1}{3}=0 α31=0
    y z i ( n ) = C 1 α n = C 1 ( 1 3 ) n y_{zi}(n)=C_1\alpha^n=C_1(\dfrac{1}{3})^n yzi(n)=C1αn=C1(31)n
  • 频域求解零状态:
    ∵由双边Z变换得 Y ( z ) ( 1 − 1 3 z − 1 ) = X ( z ) Y(z)(1-\dfrac{1}{3}z^{-1})=X(z) Y(z)(131z1)=X(z)
    Y ( z ) = X ( z ) 1 − 1 3 z − 1 = z z − 1 3 X ( z ) Y(z)=\dfrac{X(z)}{1-\dfrac{1}{3}z^{-1}}=\dfrac{z}{z-\dfrac{1}{3}}X(z) Y(z)=131z1X(z)=z31zX(z)
    x ( n ) = δ ( n ) x(n)=\delta(n) x(n)=δ(n)
    Y ( z ) = z z − 1 3 Y(z)=\dfrac{z}{z-\dfrac{1}{3}} Y(z)=z31z
    y z s ( n ) = ( 1 3 ) n u ( n ) y_{zs}(n)=(\dfrac{1}{3})^nu(n) yzs(n)=(31)nu(n)
  • 全响应=零输入+零状态
    y ( n ) = y z i ( n ) + y z s ( n ) = C 1 ( 1 3 ) n + ( 1 3 ) n u ( n ) y(n)=y_{zi}(n)+y_{zs}(n)=C_1(\dfrac{1}{3})^n+(\dfrac{1}{3})^nu(n) y(n)=yzi(n)+yzs(n)=C1(31)n+(31)nu(n)
    ∵将 y ( − 1 ) = 0 代 入 y ( n ) 得 C 1 = 0 y(-1)=0代入y(n)得C_1=0 y(1)=0y(n)C1=0
    y z i ( n ) = 0 y_{zi}(n)=0 yzi(n)=0
    y ( n ) = y z s ( n ) = ( 1 3 ) n u ( n ) y(n)=y_{zs}(n)=(\dfrac{1}{3})^nu(n) y(n)=yzs(n)=(31)nu(n)
  • y ( n ) y(n) y(n)图像:
    现代数字信号处理课后作业【第一章】_第2张图片

(2) x ( n ) = u ( n ) x(n)=u(n) x(n)=u(n)

  • 时域求解零输入:
    ∵由(1)知 y z i ( n ) = C 1 ( 1 3 ) n y_{zi}(n)=C_1(\dfrac{1}{3})^n yzi(n)=C1(31)n
  • 频域求解零状态:
    x ( n ) = u ( n ) x(n)=u(n) x(n)=u(n)
    Y ( z ) = z z − 1 ⋅ z z − 1 3 = z z ( z − 1 ) ( z − 1 3 ) = z ( A z − 1 + B z − 1 3 ) Y(z)=\dfrac{z}{z-1}\cdot\dfrac{z}{z-\dfrac{1}{3}}=z\dfrac{z}{(z-1)(z-\dfrac{1}{3})}=z\bigg(\dfrac{A}{z-1}+\dfrac{B}{z-\dfrac{1}{3}}\bigg) Y(z)=z1zz31z=z(z1)(z31)z=z(z1A+z31B)
    A = z z − 1 3 ∣ z = 1 = 3 2         B = z z − 1 ∣ z = 1 3 = − 1 2 A=\dfrac{z}{z-\dfrac{1}{3}}\bigg|_{z=1}=\dfrac{3}{2}\ \ \ \ \ \ \ B=\dfrac{z}{z-1}\bigg|_{z=\dfrac{1}{3}}=-\dfrac{1}{2} A=z31zz=1=23       B=z1zz=31=21
    Y ( z ) = 3 2 ⋅ z z − 1 − 1 2 ⋅ z z − 1 3 Y(z)=\dfrac{3}{2}\cdot\dfrac{z}{z-1}-\dfrac{1}{2}\cdot\dfrac{z}{z-\dfrac{1}{3}} Y(z)=23z1z21z31z
    y ( n ) = y z i ( n ) + y z s ( n ) = C 1 ( 1 3 ) n + 3 2 u ( n ) − 1 2 ( 1 3 ) n u ( n ) y(n)=y_{zi}(n)+y_{zs}(n)=C_1(\dfrac{1}{3})^n+\dfrac{3}{2}u(n)-\dfrac{1}{2}\big(\dfrac{1}{3}\big)^nu(n) y(n)=yzi(n)+yzs(n)=C1(31)n+23u(n)21(31)nu(n)
    ∵将 y ( − 1 ) = 0 代 入 y ( n ) 得 C 1 = 0 y(-1)=0代入y(n)得C_1=0 y(1)=0y(n)C1=0
    y z i ( n ) = 0 y_{zi}(n)=0 yzi(n)=0
    y ( n ) = y z s ( n ) = [ 3 2 − 1 2 ( 1 3 ) n ] u ( n ) y(n)=y_{zs}(n)=\bigg[\dfrac{3}{2}-\dfrac{1}{2}\big(\dfrac{1}{3}\big)^n\bigg]u(n) y(n)=yzs(n)=[2321(31)n]u(n)
  • y ( n ) y(n) y(n)图像:
    现代数字信号处理课后作业【第一章】_第3张图片

(3) x ( n ) = G N ( n )      N = 5 x(n)=G_N(n) \ \ \ \ N=5 x(n)=GN(n)    N=5

x ( n ) = G 5 ( n ) = u ( n ) − u ( n − 5 ) x(n)=G_5(n)=u(n)-u(n-5) x(n)=G5(n)=u(n)u(n5)
∵由(1)知 h ( n ) = ( 1 3 ) n u ( n ) h(n)=(\dfrac{1}{3})^nu(n) h(n)=(31)nu(n)
y ( n ) = h ( n ) ∗ x ( n ) = ∑ m = − ∞ + ∞ h ( m ) x ( n − m ) y(n)=h(n)*x(n)=\sum\limits_{m=-∞}^{+∞}h(m)x(n-m) y(n)=h(n)x(n)=m=+h(m)x(nm)
            = ∑ m = − ∞ + ∞ ( 1 3 ) m u ( m ) [ u ( n − m ) − u ( n − m − 5 ) ] \ \ \ \ \ \ \ \ \ \ \ =\sum\limits_{m=-∞}^{+∞}(\dfrac{1}{3})^mu(m)[u(n-m)-u(n-m-5)]            =m=+(31)mu(m)[u(nm)u(nm5)]
            = ∑ m = 0 n ( 1 3 ) m − ∑ m = 0 n − 5 ( 1 3 ) m \ \ \ \ \ \ \ \ \ \ \ =\sum\limits_{m=0}^{n}(\dfrac{1}{3})^m-\sum\limits_{m=0}^{n-5}(\dfrac{1}{3})^m            =m=0n(31)mm=0n5(31)m
            = ∑ m = n − 4 n ( 1 3 ) m      其 中 n − 4 ≥ 0 \ \ \ \ \ \ \ \ \ \ \ =\sum\limits_{m=n-4}^{n}(\dfrac{1}{3})^m \ \ \ \ 其中n-4\geq0            =m=n4n(31)m    n40
            = ( 1 3 ) n − 4 [ 1 − ( 1 3 ) 5 ] 1 − 1 3 u ( n − 4 ) \ \ \ \ \ \ \ \ \ \ \ =\dfrac{(\dfrac{1}{3})^{n-4}[1-(\dfrac{1}{3})^5]}{1-\dfrac{1}{3}}u(n-4)            =131(31)n4[1(31)5]u(n4)
            = 121 3 n       n = 4 , 5... \ \ \ \ \ \ \ \ \ \ \ =\dfrac{121}{3^n} \ \ \ \ \ n=4,5...            =3n121     n=4,5...
y ( n ) = h ( n ) ∗ [ u ( n ) − u ( n − 5 ) ] , 当 n = 0 , 1 , 2 , 3 , 4 时 y ( n ) = h ( n ) ∗ u ( n ) 既 ( 2 ) 中 的 解 y(n)=h(n)*[u(n)-u(n-5)],当n=0,1,2,3,4时y(n)=h(n)*u(n)既(2)中的解 y(n)=h(n)[u(n)u(n5)],n=0,1,2,3,4y(n)=h(n)u(n)(2)
y ( n ) = [ 3 2 − 1 2 ( 1 3 ) n ] [ u ( n ) − u ( n − 5 ) ] + 121 3 n u ( n − 5 ) y(n)=\bigg[\dfrac{3}{2}-\dfrac{1}{2}\big(\dfrac{1}{3}\big)^n\bigg][u(n)-u(n-5)]+\dfrac{121}{3^n}u(n-5) y(n)=[2321(31)n][u(n)u(n5)]+3n121u(n5)

  • y ( n ) y(n) y(n)图像:
    现代数字信号处理课后作业【第一章】_第4张图片

1-4 已知线性时不变系统的单位冲激响应h(n),输入x(n),求输出序列y(n),并画出y(n)的图形

(1) h ( n ) = G N ( n )       x ( n ) = G N ( n )      N = 4 h(n)=G_N(n) \ \ \ \ \ x(n)=G_N(n)\ \ \ \ N=4 h(n)=GN(n)     x(n)=GN(n)    N=4

h ( n ) = x ( n ) = u ( n ) − u ( n − 4 ) h(n)=x(n)=u(n)-u(n-4) h(n)=x(n)=u(n)u(n4)

h ( n ) = x ( n ) = { 1 , 1 , 1 , 1 }       n = 0 , 1 , 2 , 3 h(n)=x(n)=\{1,1,1,1\} \ \ \ \ \ n=0,1,2,3 h(n)=x(n)={ 1,1,1,1}     n=0,1,2,3

∴根据不进位乘法可得 y ( n ) = { 1 , 2 , 3 , 4 , 3 , 2 , 1 }      n = 0 , 1...6 y(n)=\{1,2,3,4,3,2,1\} \ \ \ \ n=0,1...6 y(n)={ 1,2,3,4,3,2,1}    n=0,1...6

y ( n ) y(n) y(n)图像:
现代数字信号处理课后作业【第一章】_第5张图片

(2) h ( n ) = 2 n G 4 ( n )       x ( n ) = δ ( n ) − δ ( n − 2 ) h(n)=2^nG_4(n) \ \ \ \ \ x(n)=\delta(n)-\delta(n-2) h(n)=2nG4(n)     x(n)=δ(n)δ(n2)

h ( n ) = 2 n [ u ( n ) − u ( n − 4 ) ] h(n)=2^n[u(n)-u(n-4)] h(n)=2n[u(n)u(n4)]

h ( n ) = { 1 , 2 , 4 , 8 }        n = 0 , 1 , 2 , 3 h(n)=\{1,2,4,8\} \ \ \ \ \ \ n=0,1,2,3 h(n)={ 1,2,4,8}      n=0,1,2,3

x ( n ) = { 1 , 0 , − 1 }         n = 0 , 1 , 2 x(n)=\{1,0,-1\} \ \ \ \ \ \ \ n=0,1,2 x(n)={ 1,0,1}       n=0,1,2

∴根据不进位乘法可得 y ( n ) = { 1 , 2 , 3 , 6 , − 4 , − 8 }      n = 0 , 1...5 y(n)=\{1,2,3,6,-4,-8\} \ \ \ \ n=0,1...5 y(n)={ 1,2,3,6,4,8}    n=0,1...5

y ( n ) y(n) y(n)图像:
现代数字信号处理课后作业【第一章】_第6张图片

(3) h ( n ) = 0. 5 n u ( n )       x ( n ) = G 5 ( n ) h(n)=0.5^nu(n) \ \ \ \ \ x(n)=G_5(n) h(n)=0.5nu(n)     x(n)=G5(n)

y ( n ) = x ( n ) ∗ h ( n ) = 0. 5 n u ( n ) ∗ [ u ( n ) − u ( n − 5 ) ] y(n)=x(n)*h(n)=0.5^nu(n)*[u(n)-u(n-5)] y(n)=x(n)h(n)=0.5nu(n)[u(n)u(n5)]
            = ∑ m = − ∞ + ∞ x ( m ) h ( n − m ) \ \ \ \ \ \ \ \ \ \ \ =\sum\limits_{m=-∞}^{+∞}x(m)h(n-m)            =m=+x(m)h(nm)
            = ∑ m = − ∞ + ∞ 0. 5 m u ( m ) [ u ( n − m ) − u ( n − m − 5 ) ] \ \ \ \ \ \ \ \ \ \ \ =\sum\limits_{m=-∞}^{+∞}0.5^mu(m)[u(n-m)-u(n-m-5)]            =m=+0.5mu(m)[u(nm)u(nm5)]
            = ∑ m = 0 n ( 1 2 ) m − ∑ m = 0 n − 5 ( 1 2 ) m \ \ \ \ \ \ \ \ \ \ \ =\sum\limits_{m=0}^{n}(\dfrac{1}{2})^m-\sum\limits_{m=0}^{n-5}(\dfrac{1}{2})^m            =m=0n(21)mm=0n5(21)m
            = ∑ m = n − 4 n ( 1 2 ) m       其 中 n − 4 ≥ 0 \ \ \ \ \ \ \ \ \ \ \ =\sum\limits_{m=n-4}^{n}(\dfrac{1}{2})^m \ \ \ \ \ 其中n-4\geq0            =m=n4n(21)m     n40
            = ( 1 2 ) n − 4 [ 1 − ( 1 2 ) 5 ] 1 − 1 2 \ \ \ \ \ \ \ \ \ \ \ =\dfrac{(\dfrac{1}{2})^{n-4}[1-(\dfrac{1}{2})^5]}{1-\dfrac{1}{2}}            =121(21)n4[1(21)5]
            = 31 2 n u ( n − 4 ) \ \ \ \ \ \ \ \ \ \ \ =\dfrac{31}{2^n}u(n-4)            =2n31u(n4)

当 n = 0 , 1 , 2 , 3 , 4 时 y ( n ) = 0. 5 n u ( n ) ∗ u ( n ) 当n=0,1,2,3,4时y(n)=0.5^nu(n)*u(n) n=0,1,2,3,4y(n)=0.5nu(n)u(n)
Y ( z ) = 2 z z − 1 − z z − 1 2 Y(z)=\dfrac{2z}{z-1}-\dfrac{z}{z-\dfrac{1}{2}} Y(z)=z12zz21z
y ( n ) = 2 − ( 1 2 ) n       n = 0 , 1 , 2 , 3 , 4 y(n)=2-(\dfrac{1}{2})^n \ \ \ \ \ n=0,1,2,3,4 y(n)=2(21)n     n=0,1,2,3,4

y ( n ) = [ 2 − ( 1 2 ) n ] [ u ( n ) − u ( n − 5 ) ] + 31 2 n u ( n − 5 ) y(n)=[2-(\dfrac{1}{2})^n][u(n)-u(n-5)]+\dfrac{31}{2^n}u(n-5) y(n)=[2(21)n][u(n)u(n5)]+2n31u(n5)

y ( n ) y(n) y(n)图像:
现代数字信号处理课后作业【第一章】_第7张图片

1-7 下示每个系统中,x(n)表示激励、y(n)表示响应,判断系统是否线性,是否时变?

(1) y ( n ) = x ( n ) s i n ( 2 π 7 n + π 6 ) y(n)=x(n)sin(\dfrac{2\pi}{7}n+\dfrac{\pi}{6}) y(n)=x(n)sin(72πn+6π)

T [ C 1 x 1 ( n ) + C 2 x 2 ( n ) ] = [ C 1 x 1 ( n ) + C 2 x 2 ( n ) ] s i n ( 2 π 7 n + π 6 ) T[C_1x_1(n)+C_2x_2(n)]=[C_1x_1(n)+C_2x_2(n)]sin(\dfrac{2\pi}{7}n+\dfrac{\pi}{6}) T[C1x1(n)+C2x2(n)]=[C1x1(n)+C2x2(n)]sin(72πn+6π)

[ C 1 y 1 ( n ) + C 2 y 2 ( n ) ] = [ C 1 x 1 ( n ) + C 2 x 2 ( n ) ] s i n ( 2 π 7 n + π 6 ) [C_1y_1(n)+C_2y_2(n)]=[C_1x_1(n)+C_2x_2(n)]sin(\dfrac{2\pi}{7}n+\dfrac{\pi}{6}) [C1y1(n)+C2y2(n)]=[C1x1(n)+C2x2(n)]sin(72πn+6π)

T [ C 1 x 1 ( n ) + C 2 x 2 ( n ) ] = [ C 1 y 1 ( n ) + C 2 y 2 ( n ) ] T[C_1x_1(n)+C_2x_2(n)]={[C_1y_1(n)+C_2y_2(n)]} T[C1x1(n)+C2x2(n)]=[C1y1(n)+C2y2(n)]

T [ x ( n − m ) ] = x ( n − m ) s i n ( 2 π 7 n + π 6 ) T[x(n-m)]=x(n-m)sin(\dfrac{2\pi}{7}n+\dfrac{\pi}{6}) T[x(nm)]=x(nm)sin(72πn+6π)

y ( n − m ) = x ( n − m ) s i n [ 2 π 7 ( n − m ) + π 6 ] y(n-m)=x(n-m)sin[\dfrac{2\pi}{7}(n-m)+\dfrac{\pi}{6}] y(nm)=x(nm)sin[72π(nm)+6π]

T [ x ( n − m ) ] ≠ y ( n − m ) T[x(n-m)]\not ={y(n-m)} T[x(nm)]=y(nm)

∴系统为线性时变

(2) y ( n ) = [ x ( n ) ] 2 y(n)=[x(n)]^2 y(n)=[x(n)]2

T [ C 1 x 1 ( n ) + C 2 x 2 ( n ) ] = [ C 1 x 1 ( n ) + C 2 x 2 ( n ) ] 2 T[C_1x_1(n)+C_2x_2(n)]=[C_1x_1(n)+C_2x_2(n)]^2 T[C1x1(n)+C2x2(n)]=[C1x1(n)+C2x2(n)]2

[ C 1 y 1 ( n ) + C 2 y 2 ( n ) ] = [ C 1 x 1 ( n ) ] 2 + [ C 2 x 2 ( n ) ] 2 [C_1y_1(n)+C_2y_2(n)]=[C_1x_1(n)]^2+[C_2x_2(n)]^2 [C1y1(n)+C2y2(n)]=[C1x1(n)]2+[C2x2(n)]2

T [ C 1 x 1 ( n ) + C 2 x 2 ( n ) ] ≠ [ C 1 y 1 ( n ) + C 2 y 2 ( n ) ] T[C_1x_1(n)+C_2x_2(n)]\not={[C_1y_1(n)+C_2y_2(n)]} T[C1x1(n)+C2x2(n)]=[C1y1(n)+C2y2(n)]

T [ x ( n − m ) ] = [ x ( n − m ) ] 2 T[x(n-m)]=[x(n-m)]^2 T[x(nm)]=[x(nm)]2

y ( n − m ) = [ x ( n − m ) ] 2 y(n-m)=[x(n-m)]^2 y(nm)=[x(nm)]2

T [ x ( n − m ) ] = y ( n − m ) T[x(n-m)]={y(n-m)} T[x(nm)]=y(nm)

∴系统为非线性时不变

1-9 用卷积法求系统响应y(n)

(1) y ( n ) = a n u ( n )     0 < a < 1 , h ( n ) = β n u ( n )     0 < β < 1 , β ≠ a y(n)=a^nu(n) \ \ \ 0y(n)=anu(n)   0<a<1,h(n)=βnu(n)   0<β<1,β=a

y ( n ) = x ( n ) ∗ h ( n ) = ∑ m = − ∞ + ∞ x ( m ) h ( n − m ) y(n)=x(n)*h(n)=\sum\limits_{m=-∞}^{+∞}x(m)h(n-m) y(n)=x(n)h(n)=m=+x(m)h(nm)
y ( n ) = ∑ m = − ∞ + ∞ α m u ( m ) β ( n − m ) u ( n − m ) y(n)=\sum\limits_{m=-∞}^{+∞}\alpha^mu(m)\beta^{(n-m)}u(n-m) y(n)=m=+αmu(m)β(nm)u(nm)
            = ∑ m = 0 n α m β ( n − m ) \ \ \ \ \ \ \ \ \ \ \ =\sum\limits_{m=0}^{n}\alpha^m\beta^{(n-m)}            =m=0nαmβ(nm)
            = β n ∑ m = 0 n ( α β ) m \ \ \ \ \ \ \ \ \ \ \ =\beta^n\sum\limits_{m=0}^{n}\big(\dfrac{\alpha}{\beta}\big)^m            =βnm=0n(βα)m
            = β n ⋅ 1 − ( α β ) n + 1 1 − α β \ \ \ \ \ \ \ \ \ \ \ =\beta^n\cdot\dfrac{1-\big(\dfrac{\alpha}{\beta}\big)^{n+1}}{1-\dfrac{\alpha}{\beta}}            =βn1βα1(βα)n+1
            = β n + 1 − α n + 1 β − α u ( n ) \ \ \ \ \ \ \ \ \ \ \ =\dfrac{\beta^{n+1}-\alpha^{n+1}}{\beta-\alpha}u(n)            =βαβn+1αn+1u(n)

(2) x ( n ) = u ( n ) , h ( n ) = δ ( n − 2 ) − δ ( n − 3 ) x(n)=u(n),h(n)=\delta(n-2)-\delta(n-3) x(n)=u(n),h(n)=δ(n2)δ(n3)

y ( n ) = x ( n ) ∗ h ( n ) y(n)=x(n)*h(n) y(n)=x(n)h(n)
x ( n ) ∗ δ ( n − m ) = x ( n − m ) x(n)*\delta(n-m)=x(n-m) x(n)δ(nm)=x(nm)
y ( n ) = u ( n − 2 ) − u ( n − 3 ) = δ ( n − 2 ) y(n)=u(n-2)-u(n-3)=\delta(n-2) y(n)=u(n2)u(n3)=δ(n2)

你可能感兴趣的:(数字信号处理课后作业,dsp,数字信号处理,matlab)