作者:Abhilash Kakumanu翻译:疯狂的技术宅
原文:https://stackabuse.com/quicks...
未经允许严禁转载
介绍
排序是指以特定顺序(数字或字母)排列线性表的元素。排序通常与搜索一起配合使用。
有许多排序算法,而迄今为止最快的算法之一是快速排序(Quicksort)。
快速排序用分治策略对给定的列表元素进行排序。这意味着算法将问题分解为子问题,直到子问题变得足够简单可以直接解决为止。
从算法上讲,这可以用递归或循环实现。但是对于这个问题,用递归法更为自然。
了解快速排序背后的逻辑
先看一下快速排序的工作原理:
- 在数组中选择一个元素,这个元素被称为基准(Pivot)。通常把数组中的第一个或最后一个元素作为基准。
- 然后,重新排列数组的元素,以使基准左侧的有元素都小于基准,而右侧的所有元素都大于基准。这一步称为分区。如果一个元素等于基准,那么在哪一侧都无关紧要。
- 针对基准的左侧和右侧分别重复这一过程,直到对数组完成排序。
接下来通过一个例子理解这些步骤。假设有一个含有未排序元素 [7, -2, 4, 1, 6, 5, 0, -4, 2]
的数组。选择最后一个元素作为基准。数组的分解步骤如下图所示:
在算法的步骤1中被选为基准的元素带颜色。分区后,基准元素始终处于数组中的正确位置。
黑色粗体边框的数组表示该特定递归分支结束时的样子,最后得到的数组只包含一个元素。
最后可以看到该算法的结果排序。
用 JavaScript 实现快速排序
这一算法的主干是“分区”步骤。无论用递归还是循环的方法,这个步骤都是一样的。
正是因为这个特点,首先编写为数组分区的代码 partition()
:
function partition(arr, start, end){
// 以最后一个元素为基准
const pivotValue = arr[end];
let pivotIndex = start;
for (let i = start; i < end; i++) {
if (arr[i] < pivotValue) {
// 交换元素
[arr[i], arr[pivotIndex]] = [arr[pivotIndex], arr[i]];
// 移动到下一个元素
pivotIndex++;
}
}
// 把基准值放在中间
[arr[pivotIndex], arr[end]] = [arr[end], arr[pivotIndex]]
return pivotIndex;
};
代码以最后一个元素为基准,用变量 pivotIndex
来跟踪“中间”位置,这个位置左侧的所有元素都比 pivotValue
小,而右侧的元素都比 pivotValue
大。
最后一步把基准(最后一个元素)与 pivotIndex
交换。
递归实现
在实现了 partition()
函数之后,我们必须递归地解决这个问题,并应用分区逻辑以完成其余步骤:
function quickSortRecursive(arr, start, end) {
// 终止条件
if (start >= end) {
return;
}
// 返回 pivotIndex
let index = partition(arr, start, end);
// 将相同的逻辑递归地用于左右子数组
quickSort(arr, start, index - 1);
quickSort(arr, index + 1, end);
}
在这个函数中首先对数组进行分区,之后对左右两个子数组进行分区。只要这个函数收到一个不为空或有多个元素的数组,则将重复该过程。
空数组和仅包含一个元素的数组被视为已排序。
最后用下面的例子进行测试:
array = [7, -2, 4, 1, 6, 5, 0, -4, 2]
quickSortRecursive(array, 0, array.length - 1)
console.log(array)
输出:
-4,-2,0,1,2,4,5,6,7
循环实现
快速排序的递归方法更加直观。但是用循环实现快速排序是一个相对常见的面试题。
与大多数的递归到循环的转换方案一样,最先想到的是用栈来模拟递归调用。这样做可以重用一些我们熟悉的递归逻辑,并在循环中使用。
我们需要一种跟踪剩下的未排序子数组的方法。一种方法是简单地把“成对”的元素保留在堆栈中,用来表示给定未排序子数组的 start
和 end
。
JavaScript 没有显式的栈数据结构,但是数组支持 push()
和 pop()
函数。但是不支持 peek()
函数,所以必须用 stack [stack.length-1]
手动检查栈顶。
我们将使用与递归方法相同的“分区”功能。看看如何编写Quicksort部分:
function quickSortIterative(arr) {
// 用push()和pop()函数创建一个将作为栈使用的数组
stack = [];
// 将整个初始数组做为“未排序的子数组”
stack.push(0);
stack.push(arr.length - 1);
// 没有显式的peek()函数
// 只要存在未排序的子数组,就重复循环
while(stack[stack.length - 1] >= 0){
// 提取顶部未排序的子数组
end = stack.pop();
start = stack.pop();
pivotIndex = partition(arr, start, end);
// 如果基准的左侧有未排序的元素,
// 则将该子数组添加到栈中,以便稍后对其进行排序
if (pivotIndex - 1 > start){
stack.push(start);
stack.push(pivotIndex - 1);
}
// 如果基准的右侧有未排序的元素,
// 则将该子数组添加到栈中,以便稍后对其进行排序
if (pivotIndex + 1 < end){
stack.push(pivotIndex + 1);
stack.push(end);
}
}
}
以下是测试代码:
ourArray = [7, -2, 4, 1, 6, 5, 0, -4, 2]
quickSortIterative(ourArray)
console.log(ourArray)
输出:
-4,-2,0,1,2,4,5,6,7
可视化演示
当涉及到排序算法时,将其可视化能帮我们直观的了解它们是怎样运作的,下面这个例子搬运自维基百科:
在图中也把最后一个元素作为基准。给定数组分区后,递归遍历左侧,直到将其完全排序为止。然后对右侧进行排序。
快速排序的效率
现在讨论它的时间和空间复杂度。快速排序在最坏情况下的时间复杂度是 $O(n^2)$。平均时间复杂度为 $O(n\log n)$。通常,使用随机版本的快速排序可以避免最坏的情况。
快速排序算法的弱点是基准的选择。每选择一次错误的基准(大于或小于大多数元素的基准)都会带来最坏的时间复杂度。在重复选择基准时,如果元素值小于或大于该元素的基准时,时间复杂度为 $O(n\log n)$。
根据经验可以观察到,无论采用哪种数据基准选择策略,快速排序的时间复杂度都倾向于具有 $O(n\log n)$ 。
快速排序不会占用任何额外的空间(不包括为递归调用保留的空间)。这种算法被称为in-place算法,不需要额外的空间。
本文首发微信公众号:前端先锋
欢迎扫描二维码关注公众号,每天都给你推送新鲜的前端技术文章
欢迎继续阅读本专栏其它高赞文章:
- 深入理解Shadow DOM v1
- 一步步教你用 WebVR 实现虚拟现实游戏
- 13个帮你提高开发效率的现代CSS框架
- 快速上手BootstrapVue
- JavaScript引擎是如何工作的?从调用栈到Promise你需要知道的一切
- WebSocket实战:在 Node 和 React 之间进行实时通信
- 关于 Git 的 20 个面试题
- 深入解析 Node.js 的 console.log
- Node.js 究竟是什么?
- 30分钟用Node.js构建一个API服务器
- Javascript的对象拷贝
- 程序员30岁前月薪达不到30K,该何去何从
- 14个最好的 JavaScript 数据可视化库
- 8 个给前端的顶级 VS Code 扩展插件
- Node.js 多线程完全指南
- 把HTML转成PDF的4个方案及实现