R语言ARIMA集成模型预测时间序列分析

原文链接:http://tecdat.cn/?p=18493

 

本文我们使用4个时间序列模型对每周的温度序列建模。第一个是通过auto.arima获得的,然后两个是SARIMA模型,最后一个是Buys-Ballot方法。

我们使用以下数据


k=620
n=nrow(elec)
futu=(k+1):n
y=electricite$Load[1:k]
plot(y,type="l")

 

R语言ARIMA集成模型预测时间序列分析_第1张图片

我们开始对温度序列进行建模(温度序列对电力负荷的影响很大)

​
y=Temp
plot(y,type="l")

 

R语言ARIMA集成模型预测时间序列分析_第2张图片


abline(lm(y[ :k]~y[( :k)-52]),col="red")


​

 

R语言ARIMA集成模型预测时间序列分析_第3张图片

 

时间序列是自相关的,在52阶

​
acf(y,lag=120)

​

 

R语言ARIMA集成模型预测时间序列分析_第4张图片

 

​
model1=auto.arima(Y)
acf(residuals(model1),120)

​

我们将这个模型保存在工作空间中,然后查看其预测。让我们在这里尝试一下SARIMA

​
arima(Y,order = c(0,0,0), 
seasonal = list(order = c(1,0,0)))


​

然后让我们尝试使用季节性单位根

​
Z=diff(Y,52)
arima(Z,order = c(0,0,1), 
seasonal = list(order = c(0,0,1)))

​

然后,我们可以尝试Buys-Ballot模型

​
lm(Temp~0+as.factor(NumWeek),


​

 

R语言ARIMA集成模型预测时间序列分析_第5张图片

对模型进行预测


plot(y,type="l",xlim=c(0,n )
abline(v=k,col="red")
lines(pre4,col="blue")

​

 

R语言ARIMA集成模型预测时间序列分析_第6张图片


plot(y,type="l",xlim=c(0,n))
abline(v=k,col="red")

​

 

R语言ARIMA集成模型预测时间序列分析_第7张图片

 

​
plot(y,type="l",xlim=c(0,n))

​

 

R语言ARIMA集成模型预测时间序列分析_第8张图片

 

​
plot(y,type="l",xlim=c(0,n))
abline(v=k,col="red")
 
​

 

R语言ARIMA集成模型预测时间序列分析_第9张图片

最后比较4个模型的结果


lines( MODEL$y1,col="  
lines( MODEL$y2,col="green")
lines( MODEL$y3,col="orange")
lines( MODEL$y4,col="blue")

​

 

R语言ARIMA集成模型预测时间序列分析_第10张图片

然后,我们可以尝试加权平均值来优化模型,而不是找出四个中的哪一个模型是“最优”,y ^ T = ∑iωiy ^ t(i)其中ω=(ωi),ω1+ ... +ωk= 1。然后,我们想要找到“最佳”权重。我们将在第一个m值上校准我们的四个模型,然后比较下111个值(和真实值)的预测组合,

R语言ARIMA集成模型预测时间序列分析_第11张图片

 

我们使用前200个值。

然后,我们在这200个值上拟合4个模型

然后我们进行预测

 
  y1=predict(model1,n.ahead = 111)$pred,
  y2=predict(model2,n.ahead = 111)$pred,
  y3=predict(model3,n.ahead = 111)$pred,
  y4=predict(model4,n.ahead = 111)$pred+
 
​

为了创建预测的线性组合,我们使用

​
a=rep(1/4,4)
y_pr = as.matrix(DOS[,1:4]) %*% a

​

因此,我们可视化这4个预测,它们的线性组合(带有等权重)及其观察值

为了找到权重的“最佳”值,最小化误差平方和,我们使用以下代码

​
function(a) sum( DONN[,1:4  %*% a-DONN[,5 )^2 
 

​

我们得到最优权重

​
 optim(par=c(0,0,0),erreur2)$par
 

​

然后,我们需要确保两种算法的收敛性:SARIMA参数的估计算法和权重参数的研究算法。


  if(inherits(TRY, "try-error")   arima(y,order = c(4,0,0) 
    seasonal = list(order = c(1,0,0)),method="CSS")
 


​

然后,我们查看权重随时间的变化。

获得下图,其中粉红色的是Buys-Ballot,粉红色的是SARIMA模型,绿色是季节性单位根,

 
barplot(va,legend = rownames(counts) 

​

 

R语言ARIMA集成模型预测时间序列分析_第12张图片

我们发现权重最大的模型是Buys Ballot模型。

可以更改损失函数,例如,我们使用90%的分位数,

​
tau=.9
function(e) (tau-(e<=0))*e

​

在函数中,我们使用

 

R语言ARIMA集成模型预测时间序列分析_第13张图片

 

这次,权重最大的两个模型是SARIMA和Buys-Ballot。


R语言ARIMA集成模型预测时间序列分析_第14张图片

最受欢迎的见解

1.在python中使用lstm和pytorch进行时间序列预测

2.python中利用长短期记忆模型lstm进行时间序列预测分析

3.使用r语言进行时间序列(arima,指数平滑)分析

4.r语言多元copula-garch-模型时间序列预测

5.r语言copulas和金融时间序列案例

6.使用r语言随机波动模型sv处理时间序列中的随机波动

7.r语言时间序列tar阈值自回归模型

8.r语言k-shape时间序列聚类方法对股票价格时间序列聚类

9.python3用arima模型进行时间序列预测

 

你可能感兴趣的:(R语言,机器学习,数理统计,R语言,ARIMA,集成模型,预测,时间序列)