xtu summer individual 1 E - Palindromic Numbers

E - Palindromic Numbers

Time Limit:2000MS     Memory Limit:32768KB     64bit IO Format:%lld & %llu

 

Description

A palindromic number or numeral palindrome is a 'symmetrical' number like 16461 that remains the same when its digits are reversed. In this problem you will be given two integers i j, you have to find the number of palindromic numbers between i and j (inclusive).

 

 

Input

Input starts with an integer T (≤ 200), denoting the number of test cases.

Each case starts with a line containing two integers i j (0 ≤ i, j ≤ 1017).

 

 

Output

For each case, print the case number and the total number of palindromic numbers between i and (inclusive).

 

 

Sample Input

4

1 10

100 1

1 1000

1 10000

 

 

Sample Output

Case 1: 9

Case 2: 18

Case 3: 108

Case 4: 198

 

解题:回文数字。分成两种类型判断,一种是长度为奇数个的,一种是长度为偶数个的。

 

举个栗子。。。

 

20 是长度为2的,偶数长度,只要枚举dp[1][2]+d[1]什么意思呢?d[1]就是长度为1 的回文数字有多少个!dp[1][2]表示以1开始,长度为2的回文数字的个数。

 

再说120.。枚举d[2],由于是奇数,最后是遇到只有一个数字的情况,这是只要枚举最中间这一位就可以了,把低位与高位设置成一致的,1x1,只有从0开始枚举x,只要还在120的范围内,每枚举一个就加一,一旦不在120的范围内立即跳出循环。

 

再说一个偶数的长度1234.。。d[3]+dp[0][2]+dp[1][2],把低位跟高位一致后,1221,判断这个数是不是在1234内,是就加一,不是就加0,好吧加0就是不加,你赢了!!!!!!

 

 1 #include <iostream>

 2 #include <cstdio>

 3 #include <cstring>

 4 #include <cstdlib>

 5 #include <vector>

 6 #include <climits>

 7 #include <algorithm>

 8 #include <cmath>

 9 #define LL long long

10 #define INF 0x3f3f3f

11 using namespace std;

12 LL dp[200][1000],d[200];

13 int len,bit[1000];

14 void init() {

15     int i,j;

16     for(i = 0; i < 10; i++)

17         dp[i][1] = dp[i][2] = 1;

18     for(i = 3; i < 20; i++) {

19         for(j = 0; j < 10; j++) {

20             dp[j][i] = 10*dp[0][i-2];

21         }

22     }

23     d[0] = 1;//以0开始的。。。0就是

24     for(i = 1; i < 20; i++) {

25         for(j = 1; j < 10; j++)

26             d[i] += dp[j][i];

27         d[i] += d[i-1];

28     }//算出0-长度为i的所有回文数字数目

29 }

30 LL go(int e) {

31     if(e < 0) return 1;

32     LL sum = 0;

33     for(int i = 0; i < 10; i++) {

34         sum += dp[i][e];

35     }

36     return sum;

37 }

38 LL cal(LL n) {

39     if(n < 10) return n+1;

40     LL x = n,ans = 0,y = 0;

41     int i,j,k,v,u;

42     for(len = 0; x; x /= 10, len++)

43         bit[len] = x%10;

44     ans += d[len-1];

45     for(j = 0,v = len>>1,i = len-1; i >= v; i--,j++) {

46         if(i == len-1) {

47             for(k = 1; k < bit[i]; k++)

48                 ans += dp[k][len];

49         } else if(i == j) {

50             u = i;break;

51         } else {

52             for(k = 0; k < bit[i]; k++)

53                 ans += dp[k][len-j*2];

54         }

55     }

56     if(i == j) {//奇数个长度,最后结果受最中间的那位影响

57         for(i = 0,j = len-1; i < j; i++,j--)

58             bit[i] = bit[j];

59         for(k = 0; k < 10; k++){

60             bit[u] = k;

61             for(y = i = 0; i < len; i++)

62                 y = y*10+bit[i];

63             if(y <= n) ans++;

64             else break;

65         }

66     }else{//偶数个长度,最后结果受最后一位影响

67         for(i = 0,j = len-1; i < j; i++,j--)

68             bit[i] = bit[j];

69         for(y = i = 0; i < len; i++)

70             y = y*10+bit[i];

71         if(y <= n) ans++;

72     }

73     return ans;

74 }

75 int main() {

76     init();

77     int t,ks = 1;

78     LL a,b,c;

79     scanf("%d",&t);

80     while(t--){

81         scanf("%lld %lld",&a,&b);

82         if(a > b) swap(a,b);

83         printf("Case %d: %lld\n",ks++,cal(b)-cal(a-1));

84     }

85     return 0;

86 }
View Code

 

你可能感兴趣的:(number)