上一篇文章中,我们讲了有关数据库的全局分析,那么在今天的文章中,我们继续看看在数据库中,如何做定向分析。
还记得我在上篇文章中提到的工具吗?mysqlreport、pt-query-digest和mysql_exportor+Prometheus+Grafana。我们在上一篇中已经讲完了mysqlreport,今天我们来看看剩下的这几个。
pt-query-digest
是个挺好的工具,它可以分析slow log
、general log
、binary log
,还能分析tcpdump抓取的MySQL协议数据,可见这个工具有多强大。pt-query-digest
属于Percona-tool工具集,这个Percona公司还出了好几个特别好使的监控MySQL的工具。
pt-query-digest
分析slow log时产生的报告逻辑非常清晰,并且数据也比较完整。执行命令后就会生成一个报告。
我来稍微解释一下这个报告。我们先看这个报告的第一个部分:
# 88.3s user time, 2.5s system time, 18.73M rss, 2.35G vsz
# Current date: Thu Jun 22 11:30:02 2017
# Hostname: localhost
# Files: /Users/Zee/Downloads/log/10.21.0.30/4001/TENCENT64-slow.log.last
# Overall: 210.18k total, 43 unique, 0.26 QPS, 0.14x concurrency _________
# Time range: 2017-06-12 21:20:51 to 2017-06-22 09:26:38
# Attribute total min max avg 95% stddev median
# ============ ======= ======= ======= ======= ======= ======= =======
# Exec time 118079s 100ms 9s 562ms 2s 612ms 293ms
# Lock time 15s 0 7ms 71us 119us 38us 69us
# Rows sent 1.91M 0 48.42k 9.53 23.65 140.48 2.90
# Rows examine 13.99G 0 3.76M 69.79k 101.89k 33.28k 68.96k
# Rows affecte 3.36M 0 1.98M 16.76 0.99 4.90k 0
# Query size 102.82M 6 10.96k 512.99 719.66 265.43 719.66
从上表中可以看得出来,在这个慢日志中,总执行时间达到了118079s,平均执行时间为562ms,最长执行时间为9s,标准方差为612ms。
可见在此示例中,SQL执行还是有点慢的。
这时也许会有人问,SQL执行多长时间才是慢呢?之前在一个金融机构,我跟一个做核心系统的团队讨论他们的SQL执行时间指标。他们判断之后说,希望SQL平均执行时间指标定在500ms。我说,你们要500ms,那前面还有一连串的节点才能到达最终的用户,如果每个环节都这样要求自己,那最终的用户不就明显感觉到很慢了吗?
经过一轮轮的讨论,最后定在了100ms以内。
其实从我的经验上来看,对于大部分实时的业务,一个SQL执行的平均时间指标定在100ms都多了。但是对性能来说就是这样,在所有的环节中都没有固定的标准,只有经验数据和不断演化的系统性能能力。
我们再接着分析上面的数据。再来看pt-query-digest
给出的负载报表:
# Profile
# Rank Query ID Response time Calls R/Call V/M Item
# ==== ================== ================ ====== ====== ===== ===========
# 1 0x6A516B681113449F 73081.7989 61.9% 76338 0.9573 0.71 UPDATE mb_trans
# 2 0x90194A5C40980DA7 38014.5008 32.2% 105778 0.3594 0.20 SELECT mb_trans mb_trans_finan
# 3 0x9B56065EE2D0A5C8 3893.9757 3.3% 9709 0.4011 0.11 UPDATE mb_finan
# MISC 0xMISC 3088.5453 2.6% 18353 0.1683 0.0 <40 ITEMS>
从这个表中可以看到,有两个SQL的执行时间占了总执行时间的94%,显然这两个SQL是要接下来要分析的重点。
我们再接着看这个工具给出的第一个SQL的性能报表:
# Query 1: 0.30 QPS, 0.29x concurrency, ID 0x6A516B681113449F at byte 127303589
# This item is included in the report because it matches --limit.
# Scores: V/M = 0.71
# Time range: 2017-06-16 21:12:05 to 2017-06-19 18:50:59
# Attribute pct total min max avg 95% stddev median
# ============ === ======= ======= ======= ======= ======= ======= =======
# Count 36 76338
# Exec time 61 73082s 100ms 5s 957ms 2s 823ms 672ms
# Lock time 19 3s 20us 7ms 38us 66us 29us 33us
# Rows sent 0 0 0 0 0 0 0 0
# Rows examine 36 5.06G 3.82k 108.02k 69.57k 101.89k 22.70k 68.96k
# Rows affecte 2 74.55k 1 1 1 1 0 1
# Query size 12 12.36M 161 263 169.75 192.76 11.55 158.58
# String:
# Databases db_bank
# Hosts 10.21.16.50 (38297/50%)... 1 more
# Users user1
# Query_time distribution
# 1us
# 10us
# 100us
# 1ms
# 10ms
# 100ms ################################################################
# 1s #########################################
# 10s+
# Tables
# SHOW TABLE STATUS FROM `db_bank` LIKE 'mb_trans'\G
# SHOW CREATE TABLE `db_bank`.`mb_trans`\G
UPDATE mb_trans
SET
resCode='PCX00000',resultMes='交易成功',payTranStatus='P03',payRouteCode='CMA'
WHERE
seqNo='20170619PM010394356875'\G
# Converted for EXPLAIN
# EXPLAIN /*!50100 PARTITIONS*/
select
resCode='PCX00000',resultMes='交易成功',payTranStatus='P03',payRouteCode='CMA' from mb_trans where
seqNo='20170619PM010394356875'\G
从查询时间分布图上来看,这个语句的执行时间在100ms~1s之间居多,95%的执行时间在2s以下。那么这个SQL就是我们接下来要调优的重点了。
第二个SQL我就不赘述了,因为逻辑是完全一样的。
通过对慢日志的分析,我们可以很快知道哪个SQL是慢的了。当然你用mysqldumpslow
分析,也会得到一样的结果。
在分析数据库的性能时,显然对SQL的分析是绕不过去的一个环节。但是我之前也说过了,上来就对SQL进行全面剖析也是不合逻辑的,因为SQL那么多,如果对每个SQL都进行详细的执行步骤解析,显然会拖慢整个系统,而且,对一些执行快的SQL进行分析也没有什么必要,徒增资源消耗。
通过上面的分析过程,我们已经定位到了具体是哪个SQL执行得慢,那么下面就是要知道SQL的执行细节。无论是在Oracle还是在MySQL中,我们都要去看执行计划。
比如说下面这样的:
上图中select_type
是子句类型的意思,有简单有复杂,但是它不能说明什么成本的问题。在这里,最重要的内容是type,因为type可以告诉你访问这个表的时候,是通过什么样的方式访问的。上图中的ALL是全表扫描的意思。type还有如下几个值:
执行计划中的possible_keys
会列出可能使用到的索引值。key这一列会列出执行时使用到的索引值。
以上信息就是MySQL的执行计划中比较重要的部分了。这些信息可以帮助我们做SQL的分析,为优化提供证据。
除了执行计划外,MySQL还提供了profiling
,这个有什么用呢?它可以把SQL执行的每一个步骤详细列出来,从一个SQL进入到数据库中,到执行完这整个生命周期。
MySQL的profiling
在session
级生效,所以当你用了慢日志,知道哪个SQL有问题之后,再用这个功能是最见成效的。如果想一开始就把所有session
的SQL profiling
功能打开,那成本就太高了。
下面我来详细解释一下profiling的用法和功能。
profiling的操作步骤比较简单,如下所示:
步骤一 :set profiling=1; //这一步是为了打开profiling功能
步骤二 :执行语句 //执行你从慢日志中看到的语句
步骤三 :show profiles; //这一步是为了查找步骤二中执行的语句的ID
步骤四 :show profile all for query id; //这一步是为了显示出profiling的结果
我们实际执行一下上面的步骤:
// 步骤一:打开profiling功能
mysql> set profiling=1;
Query OK, 0 rows affected, 1 warning (0.00 sec)
// 这一步只是为了确认一下profiles列表有没有值,可以不用执行。
mysql> show profiles;
Empty set, 1 warning (0.00 sec)
// 步骤二:执行语句
mysql> select * from t_user where user_name='Zee0355916';
+--------------------------------------+-------------+------------+--------+----------------------+-------------+---------------------+
| id | user_number | user_name | org_id | email | mobile | create_time |
+--------------------------------------+-------------+------------+--------+----------------------+-------------+---------------------+
| 00000d2d-32a8-11ea-91f8-00163e124cff | 00009496 | Zee0355916 | NULL | [email protected] | 17600009498 | 2020-01-09 14:19:32 |
| 77bdb1ef-32a6-11ea-91f8-00163e124cff | 00009496 | Zee0355916 | NULL | [email protected] | 17600009498 | 2020-01-09 14:08:34 |
| d4338339-32a2-11ea-91f8-00163e124cff | 00009496 | Zee0355916 | NULL | [email protected] | 17600009498 | 2020-01-09 13:42:31 |
+--------------------------------------+-------------+------------+--------+----------------------+-------------+---------------------+
3 rows in set (14.33 sec)
// 步骤三:查看profiles列表中,有了我们刚才执行的语句
mysql> show profiles;
+----------+-------------+---------------------------------------------------+
| Query_ID | Duration | Query |
+----------+-------------+---------------------------------------------------+
| 1 | 14.34078475 | select * from t_user where user_name='Zee0355916' |
+----------+-------------+---------------------------------------------------+
1 row in set, 1 warning (0.00 sec)
// 步骤四:看这个语句的profile信息
mysql> show profile all for query 1;
+--------------------------------+-----------+----------+------------+-------------------+---------------------+--------------+---------------+---------------+-------------------+-------------------+-------------------+-------+-----------------------+------------------+-------------+
| Status | Duration | CPU_user | CPU_system | Context_voluntary | Context_involuntary | Block_ops_in | Block_ops_out | Messages_sent | Messages_received | Page_faults_major | Page_faults_minor | Swaps | Source_function | Source_file | Source_line |
+--------------------------------+-----------+----------+------------+-------------------+---------------------+--------------+---------------+---------------+-------------------+-------------------+-------------------+-------+-----------------------+------------------+-------------+
| starting | 0.000024 | 0.000012 | 0.000005 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | NULL | NULL | NULL |
| Waiting for query cache lock | 0.000004 | 0.000003 | 0.000001 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | try_lock | sql_cache.cc | 468 |
| init | 0.000003 | 0.000002 | 0.000001 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | try_lock | sql_cache.cc | 468 |
| checking query cache for query | 0.000052 | 0.000036 | 0.000015 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | send_result_to_client | sql_cache.cc | 1601 |
| checking permissions | 0.000007 | 0.000005 | 0.000002 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | check_access | sql_parse.cc | 5316 |
| Opening tables | 0.000032 | 0.000023 | 0.000009 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | open_tables | sql_base.cc | 5095 |
| init | 0.000042 | 0.000029 | 0.000013 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | mysql_prepare_select | sql_select.cc | 1051 |
| System lock | 0.000016 | 0.000011 | 0.000004 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | mysql_lock_tables | lock.cc | 304 |
| Waiting for query cache lock | 0.000003 | 0.000002 | 0.000001 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | try_lock | sql_cache.cc | 468 |
| System lock | 0.000020 | 0.000014 | 0.000006 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | try_lock | sql_cache.cc | 468 |
| optimizing | 0.000012 | 0.000009 | 0.000004 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | optimize | sql_optimizer.cc | 139 |
| statistics | 0.000019 | 0.000013 | 0.000005 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | optimize | sql_optimizer.cc | 365 |
| preparing | 0.000015 | 0.000010 | 0.000005 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | optimize | sql_optimizer.cc | 488 |
| executing | 0.000004 | 0.000003 | 0.000001 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | exec | sql_executor.cc | 110 |
| Sending data | 14.324781 | 4.676869 | 0.762349 | 1316 | 132 | 2499624 | 288 | 0 | 0 | 8 | 30862 | 0 | exec | sql_executor.cc | 190 |
| end | 0.000015 | 0.000007 | 0.000002 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | mysql_execute_select | sql_select.cc | 1106 |
| query end | 0.000006 | 0.000005 | 0.000001 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | mysql_execute_command | sql_parse.cc | 5015 |
| closing tables | 0.000016 | 0.000013 | 0.000003 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | mysql_execute_command | sql_parse.cc | 5063 |
| freeing items | 0.000013 | 0.000010 | 0.000003 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | mysql_parse | sql_parse.cc | 6490 |
| Waiting for query cache lock | 0.000003 | 0.000002 | 0.000000 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | try_lock | sql_cache.cc | 468 |
| freeing items | 0.000014 | 0.000012 | 0.000003 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | try_lock | sql_cache.cc | 468 |
| Waiting for query cache lock | 0.000003 | 0.000002 | 0.000000 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | try_lock | sql_cache.cc | 468 |
| freeing items | 0.000003 | 0.000002 | 0.000001 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | try_lock | sql_cache.cc | 468 |
| storing result in query cache | 0.000004 | 0.000002 | 0.000000 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | end_of_result | sql_cache.cc | 1034 |
| logging slow query | 0.015645 | 0.000084 | 0.000020 | 2 | 0 | 16 | 8 | 0 | 0 | 0 | 2 | 0 | log_slow_do | sql_parse.cc | 1935 |
| cleaning up | 0.000034 | 0.000024 | 0.000006 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | dispatch_command | sql_parse.cc | 1837 |
+--------------------------------+-----------+----------+------------+-------------------+---------------------+--------------+---------------+---------------+-------------------+-------------------+-------------------+-------+-----------------------+------------------+-------------+
26 rows in set, 1 warning (0.02 sec)
非常长,从这样的数据中,我们就看到了一个语句在数据库中从开始到结束的整个生命周期。
对生命周期中的每个步骤进行统计之后,我们就可以看到每个步骤所消耗的时间。不仅如此,还能看到如下这些信息:
有了这些信息,我们基本上就可以判断语句哪里有问题了。
从上面这个示例语句中,你可以看到Sending data
这一步消耗了14秒的时间,并且从后面的数据中,也可以看到主动上下文切换有1316次,被动的有132次,块操作的量也非常大。
碰到这样的情况,我们就得先知道这个Sending data
到底是什么东西。下面我们结合之前说的到的执行计划,一起看一下:
mysql> explain select * from t_user where user_name='Zee0355916';
+----+-------------+--------+------+---------------+------+---------+------+---------+-------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+--------+------+---------------+------+---------+------+---------+-------------+
| 1 | SIMPLE | t_user | ALL | NULL | NULL | NULL | NULL | 3868195 | Using where |
+----+-------------+--------+------+---------------+------+---------+------+---------+-------------+
1 row in set (0.00 sec)
这就是个典型的全表扫描,所以下一步就是检查有没有创建索引。
mysql> show indexes from t_user;
+--------+------------+----------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+---------------+
| Table | Non_unique | Key_name | Seq_in_index | Column_name | Collation | Cardinality | Sub_part | Packed | Null | Index_type | Comment | Index_comment |
+--------+------------+----------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+---------------+
| t_user | 0 | PRIMARY | 1 | id | A | 3868195 | NULL | NULL | | BTREE | | |
+--------+------------+----------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+---------------+
1 row in set (0.00 sec)
mysql>
还是有一个主键索引的,但由于我们没用主键来查,所以用不到。
有些性能测试工程师面对这种情况可能会有这种想法:第一次没有查索引,但是把所有数据都调到缓存里了呀,所以第二次就快了嘛,于是有些人可能想尽快“完成”工作,就用重复的数据。
这里我再执行一遍,你可以看看是什么结果:
+----------+-------------+-----------------------------------------------------------+
| Query_ID | Duration | Query |
+----------+-------------+-----------------------------------------------------------+
| 1 | 14.34078475 | select * from t_user where user_name='Zee0355916' |
| 2 | 0.00006675 | show profile all for 1 |
| 3 | 0.00031700 | explain select * from t_user where user_name='Zee0355916' |
| 4 | 0.00040025 | show indexes from t_user |
+----------+-------------+-----------------------------------------------------------+
6 rows in set, 1 warning (0.00 sec)
mysql> select * from t_user where user_name='Zee0355916';
+--------------------------------------+-------------+------------+--------+----------------------+-------------+---------------------+
| id | user_number | user_name | org_id | email | mobile | create_time |
+--------------------------------------+-------------+------------+--------+----------------------+-------------+---------------------+
| 00000d2d-32a8-11ea-91f8-00163e124cff | 00009496 | Zee0355916 | NULL | [email protected] | 17600009498 | 2020-01-09 14:19:32 |
| 77bdb1ef-32a6-11ea-91f8-00163e124cff | 00009496 | Zee0355916 | NULL | [email protected] | 17600009498 | 2020-01-09 14:08:34 |
| d4338339-32a2-11ea-91f8-00163e124cff | 00009496 | Zee0355916 | NULL | [email protected] | 17600009498 | 2020-01-09 13:42:31 |
+--------------------------------------+-------------+------------+--------+----------------------+-------------+---------------------+
3 rows in set (0.00 sec)
mysql> show profiles;
+----------+-------------+-----------------------------------------------------------+
| Query_ID | Duration | Query |
+----------+-------------+-----------------------------------------------------------+
| 1 | 14.34078475 | select * from t_user where user_name='Zee0355916' |
| 2 | 0.00006675 | show profile all for 1 |
| 3 | 0.00031700 | explain select * from t_user where user_name='Zee0355916' |
| 4 | 0.00040025 | show indexes from t_user |
| 5 | 0.00027325 | select * from t_user where user_name='Zee0355916' |
+----------+-------------+-----------------------------------------------------------+
7 rows in set, 1 warning (0.00 sec)
mysql> show profile all for query 5;
+--------------------------------+----------+----------+------------+-------------------+---------------------+--------------+---------------+---------------+-------------------+-------------------+-------------------+-------+-----------------------+--------------+-------------+
| Status | Duration | CPU_user | CPU_system | Context_voluntary | Context_involuntary | Block_ops_in | Block_ops_out | Messages_sent | Messages_received | Page_faults_major | Page_faults_minor | Swaps | Source_function | Source_file | Source_line |
+--------------------------------+----------+----------+------------+-------------------+---------------------+--------------+---------------+---------------+-------------------+-------------------+-------------------+-------+-----------------------+--------------+-------------+
| starting | 0.000029 | 0.000018 | 0.000004 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | NULL | NULL | NULL |
| Waiting for query cache lock | 0.000006 | 0.000003 | 0.000001 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | try_lock | sql_cache.cc | 468 |
| init | 0.000003 | 0.000003 | 0.000000 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | try_lock | sql_cache.cc | 468 |
| checking query cache for query | 0.000008 | 0.000006 | 0.000002 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | send_result_to_client | sql_cache.cc | 1601 |
| checking privileges on cached | 0.000003 | 0.000002 | 0.000000 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | send_result_to_client | sql_cache.cc | 1692 |
| checking permissions | 0.000010 | 0.000192 | 0.000000 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | check_access | sql_parse.cc | 5316 |
| sending cached result to clien | 0.000210 | 0.000028 | 0.000000 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | send_result_to_client | sql_cache.cc | 1803 |
| cleaning up | 0.000006 | 0.000006 | 0.000000 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | dispatch_command | sql_parse.cc | 1837 |
+--------------------------------+----------+----------+------------+-------------------+---------------------+--------------+---------------+---------------+-------------------+-------------------+-------------------+-------+-----------------------+--------------+-------------+
8 rows in set, 1 warning (0.00 sec)
mys
看到没有,在用重复数据的时候确实会让响应时间快很多,因为数据直接从cache
中发给client
了。
但是,这种作法请你坚决制止,因为它不符合真实生产的样子。当你再换一个数据的时候,就会歇菜,还要再经过14秒的时间做全表扫描。
所以正确的做法是创建合适的索引,让语句在执行任何一条数据时都能快起来,那么,我们现在就创建一个索引,再看执行结果。
// 创建索引
mysql> ALTER TABLE t_user ADD INDEX username_idx (user_name);
Query OK, 0 rows affected (44.69 sec)
Records: 0 Duplicates: 0 Warnings: 0
// 分析表
mysql> analyze table t_user;
+-----------+---------+----------+----------+
| Table | Op | Msg_type | Msg_text |
+-----------+---------+----------+----------+
| pa.t_user | analyze | status | OK |
+-----------+---------+----------+----------+
1 row in set (0.08 sec)
// 执行语句
mysql> select * from t_user where user_name='Zee0046948';
+--------------------------------------+-------------+------------+--------+----------------------+-------------+---------------------+
| id | user_number | user_name | org_id | email | mobile | create_time |
+--------------------------------------+-------------+------------+--------+----------------------+-------------+---------------------+
| 000061a2-31c2-11ea-8d89-00163e124cff | 00009496 | Zee0046948 | NULL | [email protected] | 17600009498 | 2020-01-08 10:53:08 |
| 047d7ae1-32a2-11ea-91f8-00163e124cff | 00009496 | Zee0046948 | NULL | [email protected] | 17600009498 | 2020-01-09 13:36:42 |
| 1abfa543-318f-11ea-8d89-00163e124cff | 00009496 | Zee0046948 | NULL | [email protected] | 17600009498 | 2020-01-08 04:48:48 |
| 671c4014-3222-11ea-91f8-00163e124cff | 00009496 | Zee0046948 | NULL | [email protected] | 17600009498 | 2020-01-08 22:23:12 |
| 9de16dd3-32a5-11ea-91f8-00163e124cff | 00009496 | Zee0046948 | NULL | [email protected] | 17600009498 | 2020-01-09 14:02:28 |
| dd4ab182-32a4-11ea-91f8-00163e124cff | 00009496 | Zee0046948 | NULL | [email protected] | 17600009498 | 2020-01-09 13:57:05 |
| f507067e-32a6-11ea-91f8-00163e124cff | 00009496 | Zee0046948 | NULL | [email protected] | 17600009498 | 2020-01-09 14:12:04 |
| f7b82744-3185-11ea-8d89-00163e124cff | 00009496 | Zee0046948 | NULL | [email protected] | 17600009498 | 2020-01-08 03:43:24 |
+--------------------------------------+-------------+------------+--------+----------------------+-------------+---------------------+
8 rows in set (0.02 sec)
// 查看Query_ID
mysql> show profiles;
+----------+-------------+-----------------------------------------------------------+
| Query_ID | Duration | Query |
+----------+-------------+-----------------------------------------------------------+
| 1 | 14.34078475 | select * from t_user where user_name='Zee0355916' |
| 2 | 0.00006675 | show profile all for 1 |
| 3 | 0.00031700 | explain select * from t_user where user_name='Zee0355916' |
| 4 | 0.00005875 | show indexes for table t_user |
| 5 | 0.00005850 | show indexes for t_user |
| 6 | 0.00040025 | show indexes from t_user |
| 7 | 0.00027325 | select * from t_user where user_name='Zee0355916' |
| 8 | 0.00032100 | explain select * from t_user where user_name='Zee0355916' |
| 9 | 12.22490550 | select * from t_user where user_name='Zee0046945' |
| 10 | 0.00112450 | select * from t_user limit 20 |
| 11 | 44.68370500 | ALTER TABLE t_user ADD INDEX username_idx (user_name) |
| 12 | 0.07385150 | analyze table t_user |
| 13 | 0.01516450 | select * from t_user where user_name='Zee0046948' |
+----------+-------------+-----------------------------------------------------------+
13 rows in set, 1 warning (0.00 sec)
// 查看profile信息
mysql> show profile all for query 13;
+--------------------------------+----------+----------+------------+-------------------+---------------------+--------------+---------------+---------------+-------------------+-------------------+-------------------+-------+-----------------------+------------------+-------------+
| Status | Duration | CPU_user | CPU_system | Context_voluntary | Context_involuntary | Block_ops_in | Block_ops_out | Messages_sent | Messages_received | Page_faults_major | Page_faults_minor | Swaps | Source_function | Source_file | Source_line |
+--------------------------------+----------+----------+------------+-------------------+---------------------+--------------+---------------+---------------+-------------------+-------------------+-------------------+-------+-----------------------+------------------+-------------+
| starting | 0.000030 | 0.000017 | 0.000004 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | NULL | NULL | NULL |
| Waiting for query cache lock | 0.000005 | 0.000004 | 0.000001 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | try_lock | sql_cache.cc | 468 |
| init | 0.000003 | 0.000002 | 0.000000 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | try_lock | sql_cache.cc | 468 |
| checking query cache for query | 0.000060 | 0.000050 | 0.000011 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | send_result_to_client | sql_cache.cc | 1601 |
| checking permissions | 0.000009 | 0.000007 | 0.000002 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | check_access | sql_parse.cc | 5316 |
| Opening tables | 0.000671 | 0.000412 | 0.000000 | 1 | 0 | 8 | 0 | 0 | 0 | 0 | 1 | 0 | open_tables | sql_base.cc | 5095 |
| init | 0.006018 | 0.000082 | 0.000899 | 1 | 0 | 5408 | 0 | 0 | 0 | 1 | 0 | 0 | mysql_prepare_select | sql_select.cc | 1051 |
| System lock | 0.000017 | 0.000011 | 0.000003 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | mysql_lock_tables | lock.cc | 304 |
| Waiting for query cache lock | 0.000003 | 0.000003 | 0.000000 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | try_lock | sql_cache.cc | 468 |
| System lock | 0.000019 | 0.000015 | 0.000004 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | try_lock | sql_cache.cc | 468 |
| optimizing | 0.000012 | 0.000010 | 0.000002 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | optimize | sql_optimizer.cc | 139 |
| statistics | 0.001432 | 0.000167 | 0.000037 | 1 | 0 | 32 | 0 | 0 | 0 | 0 | 4 | 0 | optimize | sql_optimizer.cc | 365 |
| preparing | 0.000026 | 0.000043 | 0.000009 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | optimize | sql_optimizer.cc | 488 |
| executing | 0.000034 | 0.000005 | 0.000001 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | exec | sql_executor.cc | 110 |
| Sending data | 0.006727 | 0.000439 | 0.001111 | 13 | 0 | 1536 | 0 | 0 | 0 | 0 | 1 | 0 | exec | sql_executor.cc | 190 |
| end | 0.000014 | 0.000007 | 0.000002 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | mysql_execute_select | sql_select.cc | 1106 |
| query end | 0.000009 | 0.000008 | 0.000001 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | mysql_execute_command | sql_parse.cc | 5015 |
| closing tables | 0.000015 | 0.000012 | 0.000003 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | mysql_execute_command | sql_parse.cc | 5063 |
| freeing items | 0.000010 | 0.000008 | 0.000002 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | mysql_parse | sql_parse.cc | 6490 |
| Waiting for query cache lock | 0.000003 | 0.000002 | 0.000000 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | try_lock | sql_cache.cc | 468 |
| freeing items | 0.000027 | 0.000022 | 0.000005 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | try_lock | sql_cache.cc | 468 |
| Waiting for query cache lock | 0.000003 | 0.000002 | 0.000001 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | try_lock | sql_cache.cc | 468 |
| freeing items | 0.000003 | 0.000002 | 0.000000 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | try_lock | sql_cache.cc | 468 |
| storing result in query cache | 0.000004 | 0.000004 | 0.000001 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | end_of_result | sql_cache.cc | 1034 |
| cleaning up | 0.000015 | 0.000012 | 0.000003 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | dispatch_command | sql_parse.cc | 1837 |
+--------------------------------+----------+----------+------------+-------------------+---------------------+--------------+---------------+---------------+-------------------+-------------------+-------------------+-------+-----------------------+------------------+-------------+
25 rows in set, 1 warning (0.01 sec)
mysql>
从上面最后的profile信息你可以看出来,步骤一点没少,但是速度快了很多,这才是正确的优化思路。
在上一篇文章中,我描述了在一个数据库中,如何从全局监控的角度查看数据,今天讲的是如何找到具体慢的SQL,以及如何定位这个SQL的问题。
当然不是所有的情况下,都是SQL的问题,也有可能是配置的问题,也有可能是硬件的问题。不管什么样的问题,其分析思路都是这样的,也就是我总是在强调的:全局监控-定向监控。
当然,在这里我也应该给出MySQL分析决策树的思路。从mysqlreport
的划分上,给出几个具体的分析决策树的树枝。、
这是常见的问题,如果你有兴趣,可以自己完善这棵完整的树,因为你可能会有不一样的划分计数器的工具或思路,所以这个树是可以灵活变化的。
你一定要记得,别人给你的东西,永远变不成自己的东西,它们只能引导你。如果你自己动手去做一遍,哪怕只画出一个分枝来,都会是很大的进步。
如果你想用其他的全局监控工具,也可以考虑如下的组合,也就是mysql_exportor+Prometheus+Grafana。
我在前面也屡次提到过这类组合,不同的exportors结合Prometheus+Grafana,可以实现实时监控及数据的保存。
在这里我们看一下mysql_exportor
可以给我们提供什么样的监控数据。这里截几个图,给你大概看一下这个套装工具能看什么内容,有兴趣的话,你也可以自己搭建一下。
有关数据库的知识实在是太多了,在这两篇文章中,我重点想告诉你的,就是分析数据库应该具有的思路。至于其他的知识点,我想应该是你打开文章之前就应该储备的东西。
我们再来总结一下,在数据库的分析中,最有可能在三个方面出现问题:
对于硬件配置来说,我们只能在解决了2和3的问题之后,再来评估到底多少硬件够用的。而面对数据库配置问题,这个实在没什么好招,只能去了解数据库架构等一系列的知识之后,再学着解决。而SQL的问题呢,应该说是我们在性能测试和分析中最常见的了。SQL性能问题的分析思路也比较清晰,那就是判断出具体的SQL瓶颈点,进而做相应的优化,切记不要蒙!
现在的数据库类别比之前多太多了,每种数据库都有自己的架构和使用场景,我们要在充分了解了之后,才能下手去调。