近世代数--整环的商域--整环D扩充为域Q)

近世代数--整环的商域--整环D扩充为域Q

  • 整环可以扩充成域
  • 整环如何扩充成域/商域quotient field
    • 第一步:构造集合 S S S
    • 第二步:在 S S S上定义一个等价关系
    • 第三步:由等价关系(划分)得到商集 F F F
    • 第四步:定义商集 F F F的运算,使 F F F构成域
    • 第五步:域 F F F构造一个包含整环 D D D的域 Q Q Q
    • 第六步:域 Q Q Q的元素的表达式
  • 对比整数环、整环的商域

博主是初学近世代数(群环域),本意是想整理一些较难理解的定理、算法,加深记忆也方便日后查找;如果有错,欢迎指正。
我整理成一个系列:近世代数,方便检索。

整环可以扩充成域

我们知道

  • Z = { … − 3 , − 2 , − 1 , 0 , 1 , 2 , 3 … } Z=\{…-3,-2,-1,0,1,2,3…\} Z={ 3,2,1,0,1,2,3} Z Z Z是整数环
  • Q = { n m ∣ m , n ∈ Z , m ≠ 0 } Q=\{\frac{n}{m}|m,n\in Z,m\neq 0\} Q={ mnm,nZ,m=0} Q Q Q是有理数域
  • Z Z Z Q Q Q的子环

整数环 Z Z Z扩充为一个更大的域 Q Q Q,那么是不是所有的环都能扩充成域?如果不是,在什么限制条件下,环可以扩充成域?

  • 无零因子:有零因子的环,即 ∃ a , b ≠ 0 , a ⋅ b = 0 \exists a,b\neq 0,a·b=0 a,b=0,ab=0,那么非零元全体(包括 a , b a,b a,b)在乘法运算下不满足封闭性(非零元相乘得到零元),不构成群;
  • 有单位元:域 → \rightarrow 除环,非零元全体构成群,群的定义:有单位元
  • 交换环:存在无零因子的非交换环不一定能被一个除环包含,可交换性在定义商域的代数运算时有用到

综上,整环满足所有条件,即整环可以扩充成一个域

整环如何扩充成域/商域quotient field

整环扩充成域的构造过程:设 D D D为整环,单位元为 e e e

第一步:构造集合 S S S

S = { ( a , b ) ∣ a , b ∈ D , b ≠ 0 } S=\{(a,b)|a,b\in D,b\neq 0\} S={ (a,b)a,bD,b=0}

第二步:在 S S S上定义一个等价关系

∀ ( a , b ) , ( c , d ) ∈ S , ( a , b ) ∼ ( c , d ) ↔ a d = b c \forall (a,b),(c,d)\in S,(a,b)\sim(c,d)\leftrightarrow ad=bc (a,b),(c,d)S,(a,b)(c,d)ad=bc

  • 证明等价:
    • 自反性:证 ( a , b ) ∼ ( b , a ) (a,b)\sim(b,a) (a,b)(b,a)

      a b = b a → ( a , b ) ∼ ( a , b ) ab=ba\rightarrow (a,b)\sim(a,b) ab=ba(a,b)(a,b)

    • 对称性:证 ( a , b ) ∼ ( c , d ) → ( c , d ) ∼ ( a , b ) (a,b)\sim(c,d)\rightarrow (c,d)\sim(a,b) (a,b)(c,d)(c,d)(a,b)

      ( a , b ) ∼ ( c , d ) → a d = b c → d a = c b → c b = d a → ( c , d ) ∼ ( a , b ) (a,b)\sim(c,d)\\\rightarrow ad=bc\\\rightarrow da=cb\\\rightarrow cb=da\\\rightarrow (c,d)\sim(a,b) (a,b)(c,d)ad=bcda=cbcb=da(c,d)(a,b)

    • 传递性:证 ( a , b ) ∼ ( c , d ) , ( c , d ) ∼ ( e , f ) → ( a , b ) ∼ ( e , f ) (a,b)\sim(c,d),(c,d)\sim(e,f)\rightarrow (a,b)\sim(e,f) (a,b)(c,d),(c,d)(e,f)(a,b)(e,f)

      ( a , b ) ∼ ( c , d ) → a d = b c (a,b)\sim(c,d)\\\rightarrow ad=bc (a,b)(c,d)ad=bc (1)
      ( c , d ) ∼ ( e , f ) → c f = d e (c,d)\sim(e,f)\\\rightarrow cf=de (c,d)(e,f)cf=de (2)
      (1)(2) 相乘: a ( d c ) f = b ( c d ) e , d ≠ 0 a(dc)f=b(cd)e,d\neq 0 a(dc)f=b(cd)e,d=0

      • c = 0 c=0 c=0

        由(1)得: a = 0 a=0 a=0
        由(2)得: e = 0 e=0 e=0
        所以, a f = b e = 0 → ( a , b ) ∼ ( e , f ) af=be=0\rightarrow (a,b)\sim(e,f) af=be=0(a,b)(e,f)

      • c ≠ 0 c\neq 0 c=0

        c ≠ 0 , d ≠ 0 → c d ≠ 0 , d c ≠ 0 c\neq 0,d\neq 0\rightarrow cd\neq 0,dc\neq 0 c=0,d=0cd=0,dc=0
        又无零因子的环 → \rightarrow 左右消去律成立得, a ( d c ) f = b ( c d ) e → a ( c d ) f = b ( c d ) e → a f = b e → ( a , b ) ∼ ( e , f ) \\a(dc)f=b(cd)e\\\rightarrow a(cd)f=b(cd)e\\\rightarrow af=be\\\rightarrow (a,b)\sim(e,f) a(dc)f=b(cd)ea(cd)f=b(cd)eaf=be(a,b)(e,f)

第三步:由等价关系(划分)得到商集 F F F

  • 划分: [ a b ] = { ( c , d ) ∈ S ∣ ( c , d ) ∼ ( a , b ) } [\frac{a}{b}]=\{(c,d)\in S|(c,d)\sim(a,b)\} [ba]={ (c,d)S(c,d)(a,b)}
  • 商集: F = S / ∼ = { [ a b ] ∣ a , b ∈ D , b ≠ 0 } F=S/\sim=\{[\frac{a}{b}]|a,b\in D,b\neq 0\} F=S/={ [ba]a,bD,b=0}

第四步:定义商集 F F F的运算,使 F F F构成域

  • :乘法交换+除环;
  • 除环:非零元全体构成乘法群+环;
  • :加法交换群+乘法结合+乘法对加法分配
  • 加法交换群:加法封闭+加法结合+加法单位元+加法逆元+加法交换
  • 非零元全体构成乘法群:乘法封闭+乘法结合+乘法单位元+乘法逆元

综上,我们要证的有:

  • 加法、乘法交换
  • 加法、乘法结合
  • 乘法对加法分配
  • 加法、乘法单位元
  • 加法、乘法逆元

首先,我们定义商集 F F F上的加法、乘法运算

∀ [ a b ] , [ c d ] ∈ S , [ a b ] + [ c d ] = [ a d + b c b d ] [ a b ] ⋅ [ c d ] = [ a c b d ] \forall [\frac{a}{b}],[\frac{c}{d}]\in S,\\ [\frac{a}{b}]+[\frac{c}{d}]=[\frac{ad+bc}{bd}]\\ [\frac{a}{b}]·[\frac{c}{d}]=[\frac{ac}{bd}] [ba],[dc]S,[ba]+[dc]=[bdad+bc][ba][dc]=[bdac]

证明:

  • "+","·"是 F F F上的代数运算

    要证 [ a b ] = [ a ′ b ′ ] , [ c d ] = [ c ′ d ′ ] → [ a b ] + [ c d ] = [ a ′ b ′ ] + [ c ′ d ′ ] , [ a b ] ⋅ [ c d ] = [ a ′ b ′ ] ⋅ [ c ′ d ′ ] [\frac{a}{b}]=[\frac{a'}{b'}],[\frac{c}{d}]=[\frac{c'}{d'}]\rightarrow [\frac{a}{b}]+[\frac{c}{d}]=[\frac{a '}{b'}]+[\frac{c'}{d'}],[\frac{a}{b}]·[\frac{c}{d}]=[\frac{a'}{b'}]·[\frac{c'}{d'}] [ba]=[ba],[dc]=[dc][ba]+[dc]=[ba]+[dc],[ba][dc]=[ba][dc]

    [ a b ] = [ a ′ b ′ ] , [ c d ] = [ c ′ d ′ ] → a ′ b = a b ′ , c ′ d = c d ′ [\frac{a}{b}]=[\frac{a'}{b'}],[\frac{c}{d}]=[\frac{c'}{d'}]\\\rightarrow a'b=ab',c'd=cd' [ba]=[ba],[dc]=[dc]ab=ab,cd=cd

    • 证"+"

    ( a d + b c ) b ′ d ′ = a d b ′ d ′ + b c b ′ d ′ = ( a b ′ ) d d ′ + b b ′ ( c d ′ ) = ( a ′ b ) d d ′ + b b ′ ( c ′ d ) = ( a ′ d ′ ) b d + ( b ′ c ′ ) b d = ( a ′ d ′ + b ′ c ′ ) b d (ad+bc)b'd'\\=adb'd'+bcb'd'\\=(ab')dd'+bb'(cd')\\=(a'b)dd'+bb'(c'd)\\=(a'd')bd+(b'c')bd\\=(a'd'+b'c')bd (ad+bc)bd=adbd+bcbd=(ab)dd+bb(cd)=(ab)dd+bb(cd)=(ad)bd+(bc)bd=(ad+bc)bd

    ( a d + b c ) b ′ d ′ = ( a ′ d ′ + b ′ c ′ ) b d → [ a b ] + [ c d ] = [ a ′ b ′ ] + [ c ′ d ′ ] (ad+bc)b'd'=(a'd'+b'c')bd\rightarrow [\frac{a}{b}]+[\frac{c}{d}]=[\frac{a '}{b'}]+[\frac{c'}{d'}] (ad+bc)bd=(ad+bc)bd[ba]+[dc]=[ba]+[dc]

    • 证"·"
      a c b ′ d ′ = ( a b ′ ) ( c d ′ ) = ( a ′ b ) ( c ′ d ) = a ′ c ′ c d acb'd'=(ab')(cd')=(a'b)(c'd)=a'c'cd acbd=(ab)(cd)=(ab)(cd)=accd
      a c b ′ d ′ = a ′ c ′ c d → [ a b ] ⋅ [ c d ] = [ a ′ b ′ ] ⋅ [ c ′ d ′ ] acb'd'=a'c'cd\rightarrow [\frac{a}{b}]·[\frac{c}{d}]=[\frac{a'}{b'}]·[\frac{c'}{d'}] acbd=accd[ba][dc]=[ba][dc]
  • 加法、乘法交换

    ∀ [ a b ] , [ c d ] ∈ F , \forall [\frac{a}{b}],[\frac{c}{d}]\in F, [ba],[dc]F,
    [ a b ] + [ c d ] = [ a d + b c b d ] = [ c d ] + [ a b ] [\frac{a}{b}]+[\frac{c}{d}]=[\frac{ad+bc}{bd}]=[\frac{c}{d}]+[\frac{a}{b}] [ba]+[dc]=[bdad+bc]=[dc]+[ba]
    [ a b ] ⋅ [ c d ] = [ a c b d ] = [ c d ] ⋅ [ a b ] [\frac{a}{b}]·[\frac{c}{d}]=[\frac{ac}{bd}]=[\frac{c}{d}]·[\frac{a}{b}] [ba][dc]=[bdac]=[dc][ba]

  • 加法、乘法结合

    类似交换,易证。

  • 乘法对加法分配

    类似交换,易证。

  • 加法、乘法单位元

    ∀ [ a b ] ∈ F , [ 0 1 ] + [ a b ] = [ a b ] \forall [\frac{a}{b}]\in F,[\frac{0}{1}]+[\frac{a}{b}]=[\frac{a}{b}] [ba]F,[10]+[ba]=[ba]
    ∀ [ a b ] ∈ F , [ 1 1 ] ⋅ [ a b ] = [ a b ] \forall [\frac{a}{b}]\in F,[\frac{1}{1}]·[\frac{a}{b}]=[\frac{a}{b}] [ba]F,[11][ba]=[ba]

  • 加法、乘法逆元

    ∀ [ a b ] ∈ F , [ − a b ] + [ a b ] = [ a b − a b b 2 ] = [ 0 1 ] \forall [\frac{a}{b}]\in F,[\frac{-a}{b}]+[\frac{a}{b}]=[\frac{ab-ab}{b^2}]=[\frac{0}{1}] [ba]F,[ba]+[ba]=[b2abab]=[10]
    ∀ [ a b ] ∈ F , [ b a ] ⋅ [ a b ] = [ a b a b ] = [ 1 1 ] \forall [\frac{a}{b}]\in F,[\frac{b}{a}]·[\frac{a}{b}]=[\frac{ab}{ab}]=[\frac{1}{1}] [ba]F,[ab][ba]=[abab]=[11]

第五步:域 F F F构造一个包含整环 D D D的域 Q Q Q

由环的扩张定理知: φ : D → F \varphi:D\rightarrow F φ:DF,只要证

  • D , F D,F D,F是环
  • D ∩ F = ∅ D\cap F=\empty DF=
  • φ \varphi φ是单同态

就可以得到 ∃ Q , D ≤ Q , φ ′ : Q → F , φ ′ \exists Q,D\le Q,\varphi':Q\rightarrow F,\varphi' Q,DQ,φ:QF,φ是同构

前两者易得,证明 φ \varphi φ是单同态

  • 构造映射: φ : D → F , φ ( x ) = [ x 1 ] , x ∈ D \varphi:D\rightarrow F,\varphi(x)=[\frac{x}{1}],x\in D φ:DF,φ(x)=[1x],xD

  • 证明同态:

    φ ( x + y ) = [ x + y 1 ] = [ x 1 ] + [ y 1 ] = φ ( x ) + φ ( y ) \varphi(x+y)=[\frac{x+y}{1}]=[\frac{x}{1}]+[\frac{y}{1}]=\varphi(x)+\varphi(y) φ(x+y)=[1x+y]=[1x]+[1y]=φ(x)+φ(y)
    φ ( x ⋅ y ) = [ x ⋅ y 1 ] = [ x 1 ] ⋅ [ y 1 ] = φ ( x ) ⋅ φ ( y ) \varphi(x·y)=[\frac{x·y}{1}]=[\frac{x}{1}]·[\frac{y}{1}]=\varphi(x)·\varphi(y) φ(xy)=[1xy]=[1x][1y]=φ(x)φ(y)

  • 证明单射: ∀ x , y ∈ D , [ x 1 ] = [ y 1 ] → x ⋅ 1 = y ⋅ 1 → x = y \forall x,y\in D,[\frac{x}{1}]=[\frac{y}{1}]\rightarrow x·1=y·1\rightarrow x=y x,yD,[1x]=[1y]x1=y1x=y

第六步:域 Q Q Q的元素的表达式

D ≤ Q → Q D\le Q\rightarrow Q DQQ包含 D D D的每个非零元,以及非零元的逆元,
Q = { a b − 1 ∣ a , b ∈ D , b ≠ 0 } Q=\{ab^{-1}|a,b\in D,b\neq 0\} Q={ ab1a,bD,b=0}

验证:从 φ ′ : Q → F \varphi':Q\rightarrow F φ:QF反推: φ ′ − 1 : F → Q \varphi'^{-1}:F\rightarrow Q φ1:FQ

φ ′ − 1 ( [ a b ] ) = φ ′ − 1 ( [ a 1 ] ⋅ [ 1 b ] ) = φ ′ − 1 ( [ a 1 ] ) ⋅ φ ′ − 1 ( [ 1 b ] ) = φ ′ − 1 ( [ a 1 ] ) ⋅ φ ′ − 1 ( [ b 1 ] − 1 ) = a ⋅ ( φ ′ − 1 ( [ b 1 ] ) ) − 1 = a ⋅ b − 1 \varphi'^{-1}([\frac{a}{b}])\\=\varphi'^{-1}([\frac{a}{1}]·[\frac{1}{b}])\\=\varphi'^{-1}([\frac{a}{1}])·\varphi'^{-1}([\frac{1}{b}])\\=\varphi'^{-1}([\frac{a}{1}])·\varphi'^{-1}([\frac{b}{1}]^{-1})\\=a·(\varphi'^{-1}([\frac{b}{1}]))^{-1}\\=a·b^{-1} φ1([ba])=φ1([1a][b1])=φ1([1a])φ1([b1])=φ1([1a])φ1([1b]1)=a(φ1([1b]))1=ab1

我们称 Q Q Q是整环 D D D的商域

对比整数环、整环的商域

整数环 Z → Q : n → n m ∣ n ∈ Z , m ≠ 0 Z\rightarrow Q:n\rightarrow \frac{n}{m}|n\in Z,m\neq 0 ZQ:nmnnZ,m=0
整环 D → Q : a → a b ∣ a , b ∈ D , b ≠ 0 D\rightarrow Q:a\rightarrow \frac{a}{b}|a,b\in D,b\neq 0 DQ:abaa,bD,b=0

可以看出,整环的商域与有理数域是类似的。

你可能感兴趣的:(近世代数,数学,密码学,信息安全,抽象代数)