博主是初学近世代数(群环域),本意是想整理一些较难理解的定理、算法,加深记忆也方便日后查找;如果有错,欢迎指正。
我整理成一个系列:近世代数,方便检索。
我们知道
整数环 Z Z Z扩充为一个更大的域 Q Q Q,那么是不是所有的环都能扩充成域?如果不是,在什么限制条件下,环可以扩充成域?
综上,整环满足所有条件,即整环可以扩充成一个域。
整环扩充成域的构造过程:设 D D D为整环,单位元为 e e e
S = { ( a , b ) ∣ a , b ∈ D , b ≠ 0 } S=\{(a,b)|a,b\in D,b\neq 0\} S={ (a,b)∣a,b∈D,b=0}
∀ ( a , b ) , ( c , d ) ∈ S , ( a , b ) ∼ ( c , d ) ↔ a d = b c \forall (a,b),(c,d)\in S,(a,b)\sim(c,d)\leftrightarrow ad=bc ∀(a,b),(c,d)∈S,(a,b)∼(c,d)↔ad=bc
自反性:证 ( a , b ) ∼ ( b , a ) (a,b)\sim(b,a) (a,b)∼(b,a)
a b = b a → ( a , b ) ∼ ( a , b ) ab=ba\rightarrow (a,b)\sim(a,b) ab=ba→(a,b)∼(a,b)
对称性:证 ( a , b ) ∼ ( c , d ) → ( c , d ) ∼ ( a , b ) (a,b)\sim(c,d)\rightarrow (c,d)\sim(a,b) (a,b)∼(c,d)→(c,d)∼(a,b)
( a , b ) ∼ ( c , d ) → a d = b c → d a = c b → c b = d a → ( c , d ) ∼ ( a , b ) (a,b)\sim(c,d)\\\rightarrow ad=bc\\\rightarrow da=cb\\\rightarrow cb=da\\\rightarrow (c,d)\sim(a,b) (a,b)∼(c,d)→ad=bc→da=cb→cb=da→(c,d)∼(a,b)
传递性:证 ( a , b ) ∼ ( c , d ) , ( c , d ) ∼ ( e , f ) → ( a , b ) ∼ ( e , f ) (a,b)\sim(c,d),(c,d)\sim(e,f)\rightarrow (a,b)\sim(e,f) (a,b)∼(c,d),(c,d)∼(e,f)→(a,b)∼(e,f)
( a , b ) ∼ ( c , d ) → a d = b c (a,b)\sim(c,d)\\\rightarrow ad=bc (a,b)∼(c,d)→ad=bc (1)
( c , d ) ∼ ( e , f ) → c f = d e (c,d)\sim(e,f)\\\rightarrow cf=de (c,d)∼(e,f)→cf=de (2)
(1)(2) 相乘: a ( d c ) f = b ( c d ) e , d ≠ 0 a(dc)f=b(cd)e,d\neq 0 a(dc)f=b(cd)e,d=0
c = 0 c=0 c=0,
由(1)得: a = 0 a=0 a=0
由(2)得: e = 0 e=0 e=0
所以, a f = b e = 0 → ( a , b ) ∼ ( e , f ) af=be=0\rightarrow (a,b)\sim(e,f) af=be=0→(a,b)∼(e,f)
c ≠ 0 c\neq 0 c=0
c ≠ 0 , d ≠ 0 → c d ≠ 0 , d c ≠ 0 c\neq 0,d\neq 0\rightarrow cd\neq 0,dc\neq 0 c=0,d=0→cd=0,dc=0
又无零因子的环 → \rightarrow →左右消去律成立得, a ( d c ) f = b ( c d ) e → a ( c d ) f = b ( c d ) e → a f = b e → ( a , b ) ∼ ( e , f ) \\a(dc)f=b(cd)e\\\rightarrow a(cd)f=b(cd)e\\\rightarrow af=be\\\rightarrow (a,b)\sim(e,f) a(dc)f=b(cd)e→a(cd)f=b(cd)e→af=be→(a,b)∼(e,f)
综上,我们要证的有:
首先,我们定义商集 F F F上的加法、乘法运算
∀ [ a b ] , [ c d ] ∈ S , [ a b ] + [ c d ] = [ a d + b c b d ] [ a b ] ⋅ [ c d ] = [ a c b d ] \forall [\frac{a}{b}],[\frac{c}{d}]\in S,\\ [\frac{a}{b}]+[\frac{c}{d}]=[\frac{ad+bc}{bd}]\\ [\frac{a}{b}]·[\frac{c}{d}]=[\frac{ac}{bd}] ∀[ba],[dc]∈S,[ba]+[dc]=[bdad+bc][ba]⋅[dc]=[bdac]
证明:
"+","·"是 F F F上的代数运算
要证 [ a b ] = [ a ′ b ′ ] , [ c d ] = [ c ′ d ′ ] → [ a b ] + [ c d ] = [ a ′ b ′ ] + [ c ′ d ′ ] , [ a b ] ⋅ [ c d ] = [ a ′ b ′ ] ⋅ [ c ′ d ′ ] [\frac{a}{b}]=[\frac{a'}{b'}],[\frac{c}{d}]=[\frac{c'}{d'}]\rightarrow [\frac{a}{b}]+[\frac{c}{d}]=[\frac{a '}{b'}]+[\frac{c'}{d'}],[\frac{a}{b}]·[\frac{c}{d}]=[\frac{a'}{b'}]·[\frac{c'}{d'}] [ba]=[b′a′],[dc]=[d′c′]→[ba]+[dc]=[b′a′]+[d′c′],[ba]⋅[dc]=[b′a′]⋅[d′c′]
[ a b ] = [ a ′ b ′ ] , [ c d ] = [ c ′ d ′ ] → a ′ b = a b ′ , c ′ d = c d ′ [\frac{a}{b}]=[\frac{a'}{b'}],[\frac{c}{d}]=[\frac{c'}{d'}]\\\rightarrow a'b=ab',c'd=cd' [ba]=[b′a′],[dc]=[d′c′]→a′b=ab′,c′d=cd′
( a d + b c ) b ′ d ′ = a d b ′ d ′ + b c b ′ d ′ = ( a b ′ ) d d ′ + b b ′ ( c d ′ ) = ( a ′ b ) d d ′ + b b ′ ( c ′ d ) = ( a ′ d ′ ) b d + ( b ′ c ′ ) b d = ( a ′ d ′ + b ′ c ′ ) b d (ad+bc)b'd'\\=adb'd'+bcb'd'\\=(ab')dd'+bb'(cd')\\=(a'b)dd'+bb'(c'd)\\=(a'd')bd+(b'c')bd\\=(a'd'+b'c')bd (ad+bc)b′d′=adb′d′+bcb′d′=(ab′)dd′+bb′(cd′)=(a′b)dd′+bb′(c′d)=(a′d′)bd+(b′c′)bd=(a′d′+b′c′)bd
( a d + b c ) b ′ d ′ = ( a ′ d ′ + b ′ c ′ ) b d → [ a b ] + [ c d ] = [ a ′ b ′ ] + [ c ′ d ′ ] (ad+bc)b'd'=(a'd'+b'c')bd\rightarrow [\frac{a}{b}]+[\frac{c}{d}]=[\frac{a '}{b'}]+[\frac{c'}{d'}] (ad+bc)b′d′=(a′d′+b′c′)bd→[ba]+[dc]=[b′a′]+[d′c′]
加法、乘法交换
∀ [ a b ] , [ c d ] ∈ F , \forall [\frac{a}{b}],[\frac{c}{d}]\in F, ∀[ba],[dc]∈F,
[ a b ] + [ c d ] = [ a d + b c b d ] = [ c d ] + [ a b ] [\frac{a}{b}]+[\frac{c}{d}]=[\frac{ad+bc}{bd}]=[\frac{c}{d}]+[\frac{a}{b}] [ba]+[dc]=[bdad+bc]=[dc]+[ba]
[ a b ] ⋅ [ c d ] = [ a c b d ] = [ c d ] ⋅ [ a b ] [\frac{a}{b}]·[\frac{c}{d}]=[\frac{ac}{bd}]=[\frac{c}{d}]·[\frac{a}{b}] [ba]⋅[dc]=[bdac]=[dc]⋅[ba]
加法、乘法结合
类似交换,易证。
乘法对加法分配
类似交换,易证。
加法、乘法单位元
∀ [ a b ] ∈ F , [ 0 1 ] + [ a b ] = [ a b ] \forall [\frac{a}{b}]\in F,[\frac{0}{1}]+[\frac{a}{b}]=[\frac{a}{b}] ∀[ba]∈F,[10]+[ba]=[ba]
∀ [ a b ] ∈ F , [ 1 1 ] ⋅ [ a b ] = [ a b ] \forall [\frac{a}{b}]\in F,[\frac{1}{1}]·[\frac{a}{b}]=[\frac{a}{b}] ∀[ba]∈F,[11]⋅[ba]=[ba]
加法、乘法逆元
∀ [ a b ] ∈ F , [ − a b ] + [ a b ] = [ a b − a b b 2 ] = [ 0 1 ] \forall [\frac{a}{b}]\in F,[\frac{-a}{b}]+[\frac{a}{b}]=[\frac{ab-ab}{b^2}]=[\frac{0}{1}] ∀[ba]∈F,[b−a]+[ba]=[b2ab−ab]=[10]
∀ [ a b ] ∈ F , [ b a ] ⋅ [ a b ] = [ a b a b ] = [ 1 1 ] \forall [\frac{a}{b}]\in F,[\frac{b}{a}]·[\frac{a}{b}]=[\frac{ab}{ab}]=[\frac{1}{1}] ∀[ba]∈F,[ab]⋅[ba]=[abab]=[11]
由环的扩张定理知: φ : D → F \varphi:D\rightarrow F φ:D→F,只要证
就可以得到 ∃ Q , D ≤ Q , φ ′ : Q → F , φ ′ \exists Q,D\le Q,\varphi':Q\rightarrow F,\varphi' ∃Q,D≤Q,φ′:Q→F,φ′是同构
前两者易得,证明 φ \varphi φ是单同态:
构造映射: φ : D → F , φ ( x ) = [ x 1 ] , x ∈ D \varphi:D\rightarrow F,\varphi(x)=[\frac{x}{1}],x\in D φ:D→F,φ(x)=[1x],x∈D
证明同态:
φ ( x + y ) = [ x + y 1 ] = [ x 1 ] + [ y 1 ] = φ ( x ) + φ ( y ) \varphi(x+y)=[\frac{x+y}{1}]=[\frac{x}{1}]+[\frac{y}{1}]=\varphi(x)+\varphi(y) φ(x+y)=[1x+y]=[1x]+[1y]=φ(x)+φ(y)
φ ( x ⋅ y ) = [ x ⋅ y 1 ] = [ x 1 ] ⋅ [ y 1 ] = φ ( x ) ⋅ φ ( y ) \varphi(x·y)=[\frac{x·y}{1}]=[\frac{x}{1}]·[\frac{y}{1}]=\varphi(x)·\varphi(y) φ(x⋅y)=[1x⋅y]=[1x]⋅[1y]=φ(x)⋅φ(y)
证明单射: ∀ x , y ∈ D , [ x 1 ] = [ y 1 ] → x ⋅ 1 = y ⋅ 1 → x = y \forall x,y\in D,[\frac{x}{1}]=[\frac{y}{1}]\rightarrow x·1=y·1\rightarrow x=y ∀x,y∈D,[1x]=[1y]→x⋅1=y⋅1→x=y
D ≤ Q → Q D\le Q\rightarrow Q D≤Q→Q包含 D D D的每个非零元,以及非零元的逆元,
故 Q = { a b − 1 ∣ a , b ∈ D , b ≠ 0 } Q=\{ab^{-1}|a,b\in D,b\neq 0\} Q={ ab−1∣a,b∈D,b=0}
验证:从 φ ′ : Q → F \varphi':Q\rightarrow F φ′:Q→F反推: φ ′ − 1 : F → Q \varphi'^{-1}:F\rightarrow Q φ′−1:F→Q
φ ′ − 1 ( [ a b ] ) = φ ′ − 1 ( [ a 1 ] ⋅ [ 1 b ] ) = φ ′ − 1 ( [ a 1 ] ) ⋅ φ ′ − 1 ( [ 1 b ] ) = φ ′ − 1 ( [ a 1 ] ) ⋅ φ ′ − 1 ( [ b 1 ] − 1 ) = a ⋅ ( φ ′ − 1 ( [ b 1 ] ) ) − 1 = a ⋅ b − 1 \varphi'^{-1}([\frac{a}{b}])\\=\varphi'^{-1}([\frac{a}{1}]·[\frac{1}{b}])\\=\varphi'^{-1}([\frac{a}{1}])·\varphi'^{-1}([\frac{1}{b}])\\=\varphi'^{-1}([\frac{a}{1}])·\varphi'^{-1}([\frac{b}{1}]^{-1})\\=a·(\varphi'^{-1}([\frac{b}{1}]))^{-1}\\=a·b^{-1} φ′−1([ba])=φ′−1([1a]⋅[b1])=φ′−1([1a])⋅φ′−1([b1])=φ′−1([1a])⋅φ′−1([1b]−1)=a⋅(φ′−1([1b]))−1=a⋅b−1
我们称域 Q Q Q是整环 D D D的商域
整数环 Z → Q : n → n m ∣ n ∈ Z , m ≠ 0 Z\rightarrow Q:n\rightarrow \frac{n}{m}|n\in Z,m\neq 0 Z→Q:n→mn∣n∈Z,m=0
整环 D → Q : a → a b ∣ a , b ∈ D , b ≠ 0 D\rightarrow Q:a\rightarrow \frac{a}{b}|a,b\in D,b\neq 0 D→Q:a→ba∣a,b∈D,b=0
可以看出,整环的商域与有理数域是类似的。