- Pyeeg模块部分功能介绍
脑电情绪识别
脑电情绪识别python神经网络深度学习pycharm
1.pyeeg简单介绍PyEEG是一个Python模块(即函数库),用于提取EEG(脑电)特征。正在添加更多功能。它包含构建用于特征提取的数据的函数,例如从给定的时间序列构建嵌入序列。它还能够将功能导出为svmlight格式,以便调用机器学习及深度学习工具。2.部分函数介绍1.pyeeg.ap_entropy(X,M,R)pyeeg.ap_entropy(X, M, R)计算时间序列X的近似熵(A
- 基于传统机器学习SVM支持向量机进行分类和目标检测-视频介绍下自取
no_work
深度学习机器学习支持向量机分类
内容包括:python通过SVM+SIFT实现墙体裂缝检测107python通过SVM+SIFT实现墙体裂缝检测_哔哩哔哩_bilibili该代码使用python语言编写,代码实现了一个基于SVM(支持向量机)和SIFT(尺度不变特征变换)特征的裂缝检测系统。具体来说,分为两个部分:训练部分和检测部分。训练部分:加载图像:load_images函数从指定文件夹加载图像,并为每张图像分配标签(1表示
- SVM支持向量机python实现
努力的小巴掌
经典机器学习支持向量机
支持向量机(SupportVectorMachine,SVM)是一种强大的监督学习算法,主要用于分类和回归任务。SVM的核心思想是找到一个最优的超平面,使得不同类别的数据点能够被尽可能清晰地分开,并且这个超平面与最近的数据点之间有最大的间隔。这些最近的数据点被称为“支持向量”,因为它们决定了超平面的位置和方向。支持向量机的关键概念1.**最大间隔分离器**:-SVM的目标是找到一个超平面,该超平面
- 核方法、核技巧、核函数、核矩阵
第六五签
数学模型矩阵线性代数
核方法(KernelMethods)和核技巧(KernelTrick)是机器学习中处理非线性问题的强大理论框架和实践工具。核心目标:征服非线性许多机器学习算法(如感知机、支持向量机SVM、主成分分析PCA)本质上是寻找线性模式或线性决策边界(直线/平面/超平面)。然而,现实世界的数据往往是线性不可分的,这意味着在原始特征空间中,无法用一条直线(或超平面)完美地将不同类别的数据点分开,或者无法用线性
- 划界与分类的艺术:支持向量机(SVM)的深度解析
忘梓.
杂文支持向量机分类机器学习
划界与分类的艺术:支持向量机(SVM)的深度解析1.引言支持向量机(SupportVectorMachine,SVM)是机器学习中的经典算法,以其强大的分类和回归能力在众多领域得到了广泛应用。SVM通过找到最优超平面来分隔数据,从而实现高效的分类。然而,它在高维数据中的复杂性和核方法的使用也带来了挑战。本文将深入探讨SVM的工作原理、实现技巧、适用场景及其局限性。2.SVM的数学基础与直观理解SV
- 基于CIFAR-10图像数据集的图像分类算法——MATLAB仿真
代码探险狂人
分类matlab机器学习Matlab
基于CIFAR-10图像数据集的图像分类算法——MATLAB仿真图像分类是计算机视觉领域中的重要任务之一,它的目标是将输入的图像分到不同的预定义类别中。在本文中,我们将介绍一种基于CIFAR-10图像数据集和支持向量机(SVM)的图像分类算法,并使用MATLAB进行仿真实现。CIFAR-10是一个常用的图像分类数据集,它包含了10个不同类别的60000个32x32彩色图像。这些类别包括飞机、汽车、
- BERT 模型微调与传统机器学习的对比
MYH516
bert机器学习人工智能
BERT微调与传统机器学习的区别和联系:传统机器学习流程传统机器学习处理文本分类通常包含以下步骤:特征工程:手动设计特征(如TF-IDF、词袋模型)模型训练:使用分类器(如SVM、随机森林、逻辑回归)特征和模型调优:反复调整特征和超参数BERT微调流程BERT微调的典型流程:预训练:使用大规模无标注数据预训练BERT模型数据准备:将文本转换为BERT输入格式(tokenize、添加特殊标记)模型微
- 《Image Classification with Classic and Deep Learning Techniques》复现
几何心凉
IT优质推荐深度学习人工智能
1引言图像分类作为计算机视觉领域的核心任务,旨在将输入图像映射到离散化的语义类别标签,广泛应用于人脸识别、自动驾驶、医疗影像诊断、安防监控等场景。传统方法主要依赖手工设计的特征描述子(如SIFT、HOG、LBP)结合浅层模型(如BoVW、Fisher向量、SVM),以其可解释性和低资源消耗见长,但在端到端优化与高级表征能力方面不及深度学习。近年来,卷积神经网络(CNN)在大规模数据集(如Image
- AI入门——AI大模型、深度学习、机器学习总结
超级-码力
人工智能深度学习机器学习AIGC
以下是对AI深度学习、机器学习相关核心技术的总结与拓展,结合技术演进逻辑与前沿趋势,以全新视角呈现关键知识点一、深度学习:从感知到认知的技术革命核心突破:自动化特征工程的范式变革深度学习通过多层神经网络架构(如卷积神经网络CNN、循环神经网络RNN),实现了从原始数据中自主学习分层特征的能力。相较于传统机器学习依赖人工设计特征(如SVM的核函数、手工提取的图像边缘特征),其核心优势体现在:层次化抽
- OpenCV零基础极速入门:详解跨平台安装与环境配置(一)
WHCIS
opencvopencv人工智能计算机视觉
一、深入理解OpenCV技术生态1.1OpenCV架构解析OpenCV采用模块化设计,核心架构分为四大层次:核心模块(Core):矩阵运算、文件IO、基础数据结构图像处理(Imgproc):滤波、几何变换、特征检测高级视觉(Highgui):GUI交互、视频流处理机器学习(ML):SVM、决策树、神经网络1.2版本选择策略版本类型适用场景典型版本基础版快速原型开发opencv-python4.9.
- 【统计方法】基础分类器: logistic, knn, svm, lda
pen-ai
数据科学支持向量机算法机器学习
均方误差(MSE)理解与分解在监督学习中,均方误差衡量的是预测值与实际值之间的平均平方差:MSE=E[(Y−f^(X))2]\text{MSE}=\mathbb{E}[(Y-\hat{f}(X))^2]MSE=E[(Y−f^(X))2]MSE可以分解为三部分:MSE=Bias2(f^(x0))+Var(f^(x0))+Var(ε)\text{MSE}=\text{Bias}^2(\hat{f}(x
- 08_预处理与缩放
白杆杆红伞伞
machinelearning机器学习支持向量机人工智能
描述机器学习的一些算法(如神经网络、SVM)对数据缩放非常敏感。通常的做法是对特征进行调节,使数据表示更适合与这些算法。scikit-learn中提供了4中数据缩放方法:StandardScaler:确保每个特征平均值为0,方差为1,使所有特征都位于同一量级RobusScaler:工作原理与StandardScaler类似,确保每个特性的统计属性都位于同一范围MinMaxScaler:移动数据,使
- python怎么训练模型_python svm 怎么训练模型
weixin_39529903
python怎么训练模型
展开全部支持2113向量机SVM(SupportVectorMachine)是有监督的分类预测模型,本篇文章5261使用机器学习库scikit-learn中的手写数字数4102据集介绍使用Python对SVM模型进行1653训练并对手写数字进行识别的过程。准备工作手写数字识别的原理是将数字的图片分割为8X8的灰度值矩阵,将这64个灰度值作为每个数字的训练集对模型进行训练。手写数字所对应的真实数字作
- 核函数:解锁支持向量机的强大能力
从零开始学习人工智能
大数据人工智能机器学习
在机器学习的世界中,支持向量机(SVM)是一种强大的分类算法,而核函数则是其背后的“魔法”,让SVM能够处理复杂的非线性问题。今天,我们就来深入探讨核函数的奥秘,看看它们是如何帮助SVM在高维空间中找到最佳决策边界的。一、核函数是什么?核函数本质上是一种计算两个向量在高维空间中内积的方法,但它避免了直接将数据映射到高维空间的复杂计算。通过核函数,我们可以巧妙地将原始数据从低维空间映射到高维空间,从
- 支持向量机(SVM):解锁数据分类与回归的强大工具
从零开始学习人工智能
人工智能开源性能优化
在机器学习的世界中,支持向量机(SupportVectorMachine,简称SVM)一直以其强大的分类和回归能力而备受关注。本文将深入探讨SVM的核心功能,以及它如何在各种实际问题中发挥作用。一、SVM是什么?支持向量机是一种监督学习算法,主要用于分类和回归任务。它的核心思想是通过在特征空间中找到一个最优的分界面(超平面),将不同类别的数据点分隔开,或者拟合出一个回归函数来预测目标值。SVM的强
- JVM 视角下的指针压缩技术实现
javajvm
1准备1.1FBIWARNING文章异常啰嗦且绕弯。1.2版本使用openjdk24为跟踪的源码。fork仓库:https://github.com/openjdk/jdk/2源码追踪2.1oopDesc在JVM中,Java对象的最高层级抽象是oopDesc。代码路径在hotspot/share/oops/oop.hpp中。classoopDesc{friendclassVMStructs;fri
- 双路物理CPU机器上安装Ubuntu并部署KVM以实现系统多开
欧先生^_^
ubuntulinux运维
在双路物理CPU机器上安装Ubuntu并部署KVM以实现系统多开,并追求性能最优,需要从硬件、宿主机系统、KVM配置、虚拟机配置等多个层面进行优化。以下是详细的操作指南和优化建议:阶段一:BIOS/UEFI设置优化(重启进入)启用虚拟化技术:IntelCPU:IntelVT-x(VirtualizationTechnology)AMDCPU:AMD-V(SVM-SecureVirtualMachi
- 【Python深度学习(第二版)(2)】深度学习之前:机器学习简史
roman_日积跬步-终至千里
#python深度学习(第二版)深度学习机器学习人工智能
文章目录一.深度学习的起源1.概率建模--机器学习分类器2.早期神经网络--反向传播算法的转折3.核方法--忽略神经网络4.决策树、随机森林和梯度提升机5.神经网络替代svm与决策树二.深度学习与机器学习有何不同可以这样说,当前工业界所使用的大部分机器学习算法不是深度学习算法。深度学习不一定总是解决问题的正确工具:有时没有足够的数据,深度学习不适用;有时用其他算法可以更好地解决问题。如果第一次接触
- Python 学习日记 day15
heard_222532
Python学习日记python学习机器学习
@浙大疏锦行CRWUBearingsSVM_Fault_Classificationimportnumpyasnpfromsklearn.datasetsimportmake_classificationfromsklearn.model_selectionimporttrain_test_splitfromsklearn.linear_modelimportLogisticRegressionf
- 支持向量机(SVM)例题
phoenix@Capricornus
PR书稿支持向量机算法机器学习
对于图中所示的线性可分的20个样本数据,利用支持向量机进行预测分类,有三个支持向量A(0,2)A(0,2)A(0,2)、B(2,0)B(2,0)B(2,0)和C(−1,−1)C(-1,-1)C(−1,−1)。求支持向量机的线性判别函数。删除点A后,支持向量是否变化?求解:三个点,建立联立方程组:{w1xA+w2yA+b=1w1xB+w2yB+b=1w1xC+w2yC+b=−1\begin{case
- 支持向量机SVM:从数学原理到实际应用
代码很孬写
支持向量机算法机器学习语言模型自然语言处理ai人工智能
前言本篇文章全面深入地探讨了支持向量机(SVM)的各个方面,从基本概念、数学背景到Python和PyTorch的代码实现。文章还涵盖了SVM在文本分类、图像识别、生物信息学、金融预测等多个实际应用场景中的用法。一、引言背景支持向量机(SVM,SupportVectorMachines)是一种广泛应用于分类、回归、甚至是异常检测的监督学习算法。自从Vapnik和Chervonenkis在1995年首
- 计算机视觉(图像算法工程师)学习路线
陳錄生
计算机视觉学习人工智能
计算机视觉学习路线Python基础常量与变量列表、元组、字典、集合运算符循环条件控制语句函数面向对象与类包与模块Numpy+Pandas+Matplotlibnumpy机器学习回归问题线性回归Lasso回归Ridge回归多项式回归决策树回归AdaBoostGBDT随机森林回归分类问题逻辑回归决策树ID3-信息增益C4.5-信息增益率随机森林SVMNaiveBayes聚类问题K-MeansMDSCA
- 基于C++实现的深度学习(cnn/svm)分类器Demo
长长同学
深度学习c++cnn
1.项目简介本项目是一个基于C++实现的深度学习与传统机器学习结合的分类器Demo,主要流程为:从CSV文件读取样本数据用卷积神经网络(CNN)进行特征提取用支持向量机(SVM)进行最终分类支持模型的保存与加载提供DLL接口,方便与其他软件集成网盘地址:https://pan.baidu.com/s/1VoFdPAzueITcl_Up6hR_Wg2.主要结构与全局变量Sample结构体:存储单个样
- python打卡DAY25
Bugabooo
python开发语言
##注入所需库importpandasaspdimportseabornassnsimportmatplotlib.pyplotaspltimportrandomimportnumpyasnpimporttimeimportshap#fromsklearn.svmimportSVC#支持向量机分类器##fromsklearn.neighborsimportKNeighborsClassifier#
- python打卡DAY20
Bugabooo
python开发语言
##注入所需库importpandasaspdimportseabornassnsimportmatplotlib.pyplotaspltimportrandomimportnumpyasnpimporttimeimportshapfromsklearn.svmimportSVC#支持向量机分类器#fromsklearn.neighborsimportKNeighborsClassifier#K近
- python 打卡DAY27
Bugabooo
python开发语言
##注入所需库importpandasaspdimportseabornassnsimportmatplotlib.pyplotaspltimportrandomimportnumpyasnpimporttimeimportshap#fromsklearn.svmimportSVC#支持向量机分类器##fromsklearn.neighborsimportKNeighborsClassifier#
- java代码生成简写
优秀135
java
1.psvm2.sout注意:idea无法快捷键输出System.out.println();并且即使手动输入也会报错cannotresolvesymbol“println”,原因是没写main函数。。。3.数组名.sout或者变量名.sout4.数组名.fori或者数字.fori(普通for)5.单列集合名.for(增强for)
- 计算机视觉与深度学习 | Matlab实现INFO-BiTCN-SVM向量加权优化算法优化双向时间卷积神经网络结合支持向量机时间序列预测,含优化前后对比(Matlab完整源码和数据)
单北斗SLAMer
cnnlstmmatlab深度学习机器学习
以下是一个基于Matlab2023b实现的INFO-BiTCN-SVM时间序列预测系统的完整代码框架,包含智能优化算法、双向时间卷积网络与支持向量机的混合模型以及多指标评估体系。代码经过模块化设计,可直接运行并复现实验结果。%%主程序:INFO-BiTCN-SVM时间序列预测系统clc;clear;closeall;warningoff;%设置随机种子保证可重复性rng(2024);%加载/生成仿
- Xen Intro- version 1.0
xianfengdesign
Xenxenmigrationfilestructdomainlinux
XenIntro-version1.0:目录IntroductionXenandIA32ProtectionModesTheXenddaemon:TheXenStore:VT-x(virtualtechnology)processors-supportinXenVmxloaderVT-i(virtualtechnology)processors-supportinXenAMDSVMXenOnSol
- mrvm是RVM的改进可直接用于多分类模型
yt94832
分类机器学习算法
MRVM(Multi-classRelevanceVectorMachine)是对传统RVM(RelevanceVectorMachine)的改进版本,旨在直接处理多分类任务,而非依赖传统的“一对一”或“一对多”策略。1.RVM基础与多分类挑战RVM原理:基于贝叶斯框架,通过最大化边缘似然进行稀疏建模,适用于二分类问题。其核函数(如高斯核)与SVM类似,但通过概率推断输出结果。多分类局限:原生RV
- mondb入手
木zi_鸣
mongodb
windows 启动mongodb 编写bat文件,
mongod --dbpath D:\software\MongoDBDATA
mongod --help 查询各种配置
配置在mongob
打开批处理,即可启动,27017原生端口,shell操作监控端口 扩展28017,web端操作端口
启动配置文件配置,
数据更灵活 
- 大型高并发高负载网站的系统架构
bijian1013
高并发负载均衡
扩展Web应用程序
一.概念
简单的来说,如果一个系统可扩展,那么你可以通过扩展来提供系统的性能。这代表着系统能够容纳更高的负载、更大的数据集,并且系统是可维护的。扩展和语言、某项具体的技术都是无关的。扩展可以分为两种:
1.
- DISPLAY变量和xhost(原创)
czmmiao
display
DISPLAY
在Linux/Unix类操作系统上, DISPLAY用来设置将图形显示到何处. 直接登陆图形界面或者登陆命令行界面后使用startx启动图形, DISPLAY环境变量将自动设置为:0:0, 此时可以打开终端, 输出图形程序的名称(比如xclock)来启动程序, 图形将显示在本地窗口上, 在终端上输入printenv查看当前环境变量, 输出结果中有如下内容:DISPLAY=:0.0
- 获取B/S客户端IP
周凡杨
java编程jspWeb浏览器
最近想写个B/S架构的聊天系统,因为以前做过C/S架构的QQ聊天系统,所以对于Socket通信编程只是一个巩固。对于C/S架构的聊天系统,由于存在客户端Java应用,所以直接在代码中获取客户端的IP,应用的方法为:
String ip = InetAddress.getLocalHost().getHostAddress();
然而对于WEB
- 浅谈类和对象
朱辉辉33
编程
类是对一类事物的总称,对象是描述一个物体的特征,类是对象的抽象。简单来说,类是抽象的,不占用内存,对象是具体的,
占用存储空间。
类是由属性和方法构成的,基本格式是public class 类名{
//定义属性
private/public 数据类型 属性名;
//定义方法
publ
- android activity与viewpager+fragment的生命周期问题
肆无忌惮_
viewpager
有一个Activity里面是ViewPager,ViewPager里面放了两个Fragment。
第一次进入这个Activity。开启了服务,并在onResume方法中绑定服务后,对Service进行了一定的初始化,其中调用了Fragment中的一个属性。
super.onResume();
bindService(intent, conn, BIND_AUTO_CREATE);
- base64Encode对图片进行编码
843977358
base64图片encoder
/**
* 对图片进行base64encoder编码
*
* @author mrZhang
* @param path
* @return
*/
public static String encodeImage(String path) {
BASE64Encoder encoder = null;
byte[] b = null;
I
- Request Header简介
aigo
servlet
当一个客户端(通常是浏览器)向Web服务器发送一个请求是,它要发送一个请求的命令行,一般是GET或POST命令,当发送POST命令时,它还必须向服务器发送一个叫“Content-Length”的请求头(Request Header) 用以指明请求数据的长度,除了Content-Length之外,它还可以向服务器发送其它一些Headers,如:
- HttpClient4.3 创建SSL协议的HttpClient对象
alleni123
httpclient爬虫ssl
public class HttpClientUtils
{
public static CloseableHttpClient createSSLClientDefault(CookieStore cookies){
SSLContext sslContext=null;
try
{
sslContext=new SSLContextBuilder().l
- java取反 -右移-左移-无符号右移的探讨
百合不是茶
位运算符 位移
取反:
在二进制中第一位,1表示符数,0表示正数
byte a = -1;
原码:10000001
反码:11111110
补码:11111111
//异或: 00000000
byte b = -2;
原码:10000010
反码:11111101
补码:11111110
//异或: 00000001
- java多线程join的作用与用法
bijian1013
java多线程
对于JAVA的join,JDK 是这样说的:join public final void join (long millis )throws InterruptedException Waits at most millis milliseconds for this thread to die. A timeout of 0 means t
- Java发送http请求(get 与post方法请求)
bijian1013
javaspring
PostRequest.java
package com.bijian.study;
import java.io.BufferedReader;
import java.io.DataOutputStream;
import java.io.IOException;
import java.io.InputStreamReader;
import java.net.HttpURL
- 【Struts2二】struts.xml中package下的action配置项默认值
bit1129
struts.xml
在第一部份,定义了struts.xml文件,如下所示:
<!DOCTYPE struts PUBLIC
"-//Apache Software Foundation//DTD Struts Configuration 2.3//EN"
"http://struts.apache.org/dtds/struts
- 【Kafka十三】Kafka Simple Consumer
bit1129
simple
代码中关于Host和Port是割裂开的,这会导致单机环境下的伪分布式Kafka集群环境下,这个例子没法运行。
实际情况是需要将host和port绑定到一起,
package kafka.examples.lowlevel;
import kafka.api.FetchRequest;
import kafka.api.FetchRequestBuilder;
impo
- nodejs学习api
ronin47
nodejs api
NodeJS基础 什么是NodeJS
JS是脚本语言,脚本语言都需要一个解析器才能运行。对于写在HTML页面里的JS,浏览器充当了解析器的角色。而对于需要独立运行的JS,NodeJS就是一个解析器。
每一种解析器都是一个运行环境,不但允许JS定义各种数据结构,进行各种计算,还允许JS使用运行环境提供的内置对象和方法做一些事情。例如运行在浏览器中的JS的用途是操作DOM,浏览器就提供了docum
- java-64.寻找第N个丑数
bylijinnan
java
public class UglyNumber {
/**
* 64.查找第N个丑数
具体思路可参考 [url] http://zhedahht.blog.163.com/blog/static/2541117420094245366965/[/url]
*
题目:我们把只包含因子
2、3和5的数称作丑数(Ugly Number)。例如6、8都是丑数,但14
- 二维数组(矩阵)对角线输出
bylijinnan
二维数组
/**
二维数组 对角线输出 两个方向
例如对于数组:
{ 1, 2, 3, 4 },
{ 5, 6, 7, 8 },
{ 9, 10, 11, 12 },
{ 13, 14, 15, 16 },
slash方向输出:
1
5 2
9 6 3
13 10 7 4
14 11 8
15 12
16
backslash输出:
4
3
- [JWFD开源工作流设计]工作流跳跃模式开发关键点(今日更新)
comsci
工作流
既然是做开源软件的,我们的宗旨就是给大家分享设计和代码,那么现在我就用很简单扼要的语言来透露这个跳跃模式的设计原理
大家如果用过JWFD的ARC-自动运行控制器,或者看过代码,应该知道在ARC算法模块中有一个函数叫做SAN(),这个函数就是ARC的核心控制器,要实现跳跃模式,在SAN函数中一定要对LN链表数据结构进行操作,首先写一段代码,把
- redis常见使用
cuityang
redis常见使用
redis 通常被认为是一个数据结构服务器,主要是因为其有着丰富的数据结构 strings、map、 list、sets、 sorted sets
引入jar包 jedis-2.1.0.jar (本文下方提供下载)
package redistest;
import redis.clients.jedis.Jedis;
public class Listtest
- 配置多个redis
dalan_123
redis
配置多个redis客户端
<?xml version="1.0" encoding="UTF-8"?><beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi=&quo
- attrib命令
dcj3sjt126com
attr
attrib指令用于修改文件的属性.文件的常见属性有:只读.存档.隐藏和系统.
只读属性是指文件只可以做读的操作.不能对文件进行写的操作.就是文件的写保护.
存档属性是用来标记文件改动的.即在上一次备份后文件有所改动.一些备份软件在备份的时候会只去备份带有存档属性的文件.
- Yii使用公共函数
dcj3sjt126com
yii
在网站项目中,没必要把公用的函数写成一个工具类,有时候面向过程其实更方便。 在入口文件index.php里添加 require_once('protected/function.php'); 即可对其引用,成为公用的函数集合。 function.php如下:
<?php /** * This is the shortcut to D
- linux 系统资源的查看(free、uname、uptime、netstat)
eksliang
netstatlinux unamelinux uptimelinux free
linux 系统资源的查看
转载请出自出处:http://eksliang.iteye.com/blog/2167081
http://eksliang.iteye.com 一、free查看内存的使用情况
语法如下:
free [-b][-k][-m][-g] [-t]
参数含义
-b:直接输入free时,显示的单位是kb我们可以使用b(bytes),m
- JAVA的位操作符
greemranqq
位运算JAVA位移<<>>>
最近几种进制,加上各种位操作符,发现都比较模糊,不能完全掌握,这里就再熟悉熟悉。
1.按位操作符 :
按位操作符是用来操作基本数据类型中的单个bit,即二进制位,会对两个参数执行布尔代数运算,获得结果。
与(&)运算:
1&1 = 1, 1&0 = 0, 0&0 &
- Web前段学习网站
ihuning
Web
Web前段学习网站
菜鸟学习:http://www.w3cschool.cc/
JQuery中文网:http://www.jquerycn.cn/
内存溢出:http://outofmemory.cn/#csdn.blog
http://www.icoolxue.com/
http://www.jikexue
- 强强联合:FluxBB 作者加盟 Flarum
justjavac
r
原文:FluxBB Joins Forces With Flarum作者:Toby Zerner译文:强强联合:FluxBB 作者加盟 Flarum译者:justjavac
FluxBB 是一个快速、轻量级论坛软件,它的开发者是一名德国的 PHP 天才 Franz Liedke。FluxBB 的下一个版本(2.0)将被完全重写,并已经开发了一段时间。FluxBB 看起来非常有前途的,
- java统计在线人数(session存储信息的)
macroli
javaWeb
这篇日志是我写的第三次了 前两次都发布失败!郁闷极了!
由于在web开发中常常用到这一部分所以在此记录一下,呵呵,就到备忘录了!
我对于登录信息时使用session存储的,所以我这里是通过实现HttpSessionAttributeListener这个接口完成的。
1、实现接口类,在web.xml文件中配置监听类,从而可以使该类完成其工作。
public class Ses
- bootstrp carousel初体验 快速构建图片播放
qiaolevip
每天进步一点点学习永无止境bootstrap纵观千象
img{
border: 1px solid white;
box-shadow: 2px 2px 12px #333;
_width: expression(this.width > 600 ? "600px" : this.width + "px");
_height: expression(this.width &
- SparkSQL读取HBase数据,通过自定义外部数据源
superlxw1234
sparksparksqlsparksql读取hbasesparksql外部数据源
关键字:SparkSQL读取HBase、SparkSQL自定义外部数据源
前面文章介绍了SparSQL通过Hive操作HBase表。
SparkSQL从1.2开始支持自定义外部数据源(External DataSource),这样就可以通过API接口来实现自己的外部数据源。这里基于Spark1.4.0,简单介绍SparkSQL自定义外部数据源,访
- Spring Boot 1.3.0.M1发布
wiselyman
spring boot
Spring Boot 1.3.0.M1于6.12日发布,现在可以从Spring milestone repository下载。这个版本是基于Spring Framework 4.2.0.RC1,并在Spring Boot 1.2之上提供了大量的新特性improvements and new features。主要包含以下:
1.提供一个新的sprin