- 大语言模型学习路线:从入门到实战
大模型官方资料
语言模型学习人工智能产品经理自然语言处理搜索引擎
大语言模型学习路线:从入门到实战在人工智能领域,大语言模型(LargeLanguageModels,LLMs)正迅速成为一个热点话题。本学习路线旨在为有基本Python编程和深度学习基础的学习者提供一个清晰、系统的大模型学习指南,帮助你在这一领域快速成长。本学习路线更新至2024年02月,后期部分内容或工具可能需要更新。适应人群已掌握Python基础具备基本的深度学习知识学习步骤本路线将通过四个核
- 【深度学习基础】第二十四课:softmax函数的导数
x-jeff
深度学习基础深度学习人工智能
【深度学习基础】系列博客为学习Coursera上吴恩达深度学习课程所做的课程笔记。1.softmax函数softmax函数详解。2.softmax函数的导数假设神经网络输出层的激活函数为softmax函数,用以解决多分类问题。在反向传播时,就需要计算softmax函数的导数,这也就是本文着重介绍的内容。我们只需关注输出层即可,其余层和之前介绍的二分类模型一样,不再赘述。我们先考虑只有一个样本的情况
- 【人工智能基础2】机器学习、深度学习总结
roman_日积跬步-终至千里
人工智能习题人工智能机器学习深度学习
文章目录一、人工智能关键技术二、机器学习基础1.监督、无监督、半监督学习2.损失函数:四种损失函数3.泛化与交叉验证4.过拟合与欠拟合5.正则化6.支持向量机三、深度学习基础1、概念与原理2、学习方式3、多层神经网络训练方法一、人工智能关键技术领域基础原理与逻辑机器学习机器学习基于数据,研究从观测数据出发寻找规律,利用这些规律对未来数据进行预测。基于学习模式,机器学习可以分为监督、无监督、强化学习
- 深度学习模块缝合教程:从理论到实践
RockLiu@805
深度学习模块机器视觉深度学习人工智能
深度学习模块缝合教程:从理论到实践引言随着深度学习的不断发展,模型的设计与优化成为研究者关注的核心问题之一。如何有效地“缝合”不同模块,以实现更高效的计算和更强大的功能,是当前深度学习研究中的一个重要课题。在本文中,我们将从基础概念出发,详细探讨深度学习模块缝合的方法、技巧及其应用场景。无论是理论深厚的研究者还是实验导向的实践者,都可以从中获得启发。一、深度学习基础知识详解深度学习是人工智能领域的
- 深度学习基础-onnxruntime推理模型
yuweififi
深度学习人工智能
以下是一个完整的示例,展示如何加载ONNX模型、获取模型信息并运行推理:importonnxruntimeimportnumpyasnp#模型路径bev_head_onnx_path="path/to/your/bev_head.onnx"#加载模型session=onnxruntime.InferenceSession(bev_head_onnx_path)#获取模型元信息model_meta=
- 1.动手学习深度学习课程安排及深度学习数学基础
Unknown To Known
动手学习深度学习深度学习人工智能
视频资源B站:动手学习深度学习——李沐目录目标内容将学到什么1.N维数组样例2.访问2维数组元素3.数据操作4.线性代数5.矩阵计算6.自动求导目标介绍深度学习景点和最新模型LeNetAlexNetVGGResNetLSTMBERT…机器学习基础损失函数,目标函数,过拟合,优化实践使用pytorch实现介绍的知识点在真实数据上体验算法效果内容深度学习基础——线性神经网络,多层感知机卷积神经网络——
- 一学就会的深度学习基础指令及操作步骤(5)使用预训练模型
小圆圆666
深度学习人工智能python卷积神经网络
文章目录使用预训练模型加载预训练模型图像加载与预处理预测使用预训练模型查看模型库和常用模型加载预训练模型fromtorchvision.modelsimportvgg16#VGG16模型架构的定义fromtorchvision.modelsimportVGG16_Weights#VGG16的预训练权重配置#loadtheVGG16network*pre-trained*ontheImageNetd
- 一学就会的深度学习基础指令及操作步骤(6)迁移学习
小圆圆666
深度学习迁移学习人工智能卷积神经网络
文章目录迁移学习模型准备数据增强模型训练模型微调和预测检查预测结果迁移学习迁移学习是将一个任务中学到的知识应用到另一个相关任务上,以提高新任务的学习效率和性能。优势:节省训练时间,提高模型性能,尤其在小数据场景下效果显著。核心是利用源域的知识来帮助目标域任务,比如在ImageNet上预训练的模型用于医疗影像分类。源域(SourceDomain):已有知识的领域(如ImageNet图像库)。目标域(
- 深度学习模型:原理、应用与代码实践
accurater
c++算法笔记人工智能深度学习
引言深度学习作为人工智能的核心技术,已在图像识别、自然语言处理、代码生成等领域取得突破性进展。其核心在于通过多层神经网络自动提取数据特征,解决复杂任务。本文将从基础理论、模型架构、优化策略、应用场景及挑战等多个维度展开,结合代码示例,系统解析深度学习模型的技术脉络与实践方法。一、深度学习基础理论神经网络基本原理神经网络由输入层、隐藏层和输出层构成,通过反向传播算法调整权重。以全连接网络为例,前向传
- 深度学习进阶:TensorFlow实战指南
ELSON麦香包
本文还有配套的精品资源,点击获取简介:《TensorFlow实战Google深度学习框架》详细指导读者学习TensorFlow,涵盖基础概念、数据流图、API使用、张量和变量操作,深度学习基础如CNN和RNN,以及自定义层和优化算法。书中还提供使用TensorFlow构建和训练深度学习模型的实例,包括AlexNet、VGG、ResNet以及LSTM和GRU,并通过图像分类和文本情感分析等实战案例,
- 【AI深度学习基础】Pandas完全指南入门篇:数据处理的瑞士军刀 (含完整代码)
arbboter
人工智能人工智能深度学习pandas数据处理数据分析数据清洗数据分析效率提升
Pandas系列文章导航入门篇进阶篇终极篇一、引言在大数据与AI驱动的时代,数据预处理和分析是深度学习与机器学习的基石。Pandas作为Python生态中最强大的数据处理库,以其灵活的数据结构(如DataFrame和Series)和丰富的功能(数据清洗、转换、聚合等),成为数据科学家和工程师的核心工具。Pandas以Series(一维标签数组)和DataFrame(二维表格)为核心数据结构,提供高
- 全过程带你从入门到精通《动手学PyTorch深度学习建模与应用》第二章:2.1-2.3节详解,篇幅超了,缺的后面再补吧
环工人学Python
深度学习pytorch人工智能python机器学习
写在前面:点点关注不迷路,免费的赞和收藏走起来!后续更新第一时间提示哦,每周会更新不同内容,下周更新如何用各种模态的大模型去为你服务,编写代码。在深度学习的世界里,理解基础概念是构建复杂模型的关键。第二章“深度学习基础与PyTorch实现”将帮助我们深入理解深度学习的核心概念,并通过PyTorch实现这些概念。这一章的内容非常重要,因为它不仅涵盖了神经网络的基本原理,还介绍了激活函数、损失函数和优
- 大模型最新面试题系列:深度学习基础(二)
人肉推土机
大模型最新面试题集锦大全AI编程人工智能pytorchpython面试
21.解释模型容量与过拟合的关系,如何在理论上平衡两者?模型容量与过拟合的关系模型容量指的是模型能够学习的复杂模式的能力,通常与模型的参数数量、网络结构的复杂度等相关。过拟合是指模型在训练数据上表现很好,但在未见过的测试数据上表现不佳。当模型容量较低时,模型可能无法学习到数据中的复杂模式,导致欠拟合,即在训练集和测试集上的表现都较差。随着模型容量的增加,模型能够学习到更复杂的模式,在训练集上的表现
- 深度学习面试八股文——决战金三银四
Good Note
补档深度学习面试人工智能机器学习AIGC校招春招
大家好,这里是好评笔记,公主号:Goodnote,专栏文章私信限时Free。本笔记的任务是解读深度学习实践/面试过程中可能会用到的知识点,内容通俗易懂,入门、实习和校招轻松搞定。公主号合集地址点击进入优惠地址:深度学习笔记合集笔记介绍本笔记的任务是解读深度学习实践/面试过程中可能会用到的知识点,内容通俗易懂,入门、实习和校招轻松搞定。涵盖深度学习八股文和常用算法、模型,包括深度学习基础知识,前向传
- DeepSeek混合精度训练核心技术解析与实践指南
燃灯工作室
Deepseek数据挖掘语音识别计算机视觉目标检测机器学习人工智能
1.主题背景1.1Why混合精度训练(价值)混合精度训练通过结合FP16和FP32数据格式,在保证模型精度的前提下实现:40-60%显存占用降低(ResNet50案例:从7.8GB降至4.2GB)1.5-3倍训练速度提升(BERT-Large案例:从8h缩短至5h)突破大模型训练显存瓶颈(GPT-3训练显存需求从3TB降至1.8TB)1.2行业定位属于深度学习基础设施层的训练优化技术,处于模型开发
- 计算机视觉CV学习路线
我喝AD钙
我的学习笔记计算机视觉学习人工智能
计算机视觉CV学习路线1.基础准备(可参考mooc学习)2.计算机视觉基础知识(可参考mooc学习、计算机图形学)3.经典计算机视觉算法(可参考吴恩达机器学习课程、国内外计算机图形学课程)4.深度学习基础(参考吴恩达和TF、Keras官网手册)5.深度学习在计算机视觉中的应用(李飞飞课程、arxiv论文原文和解析博客,实战参考gitee/github)6.现代计算机视觉技术(arxiv论文原文和解
- 【深度学习基础模型】去噪自编码器 (Denoising Autoencoders, DAE)详细理解并附实现代码。
985小水博一枚呀
深度学习学习笔记深度学习人工智能VAEpython学习autoencoder
【深度学习基础模型】ExtractingandComposingRobustFeatureswithDenoisingAutoencoders【深度学习基础模型】ExtractingandComposingRobustFeatureswithDenoisingAutoencoders文章目录【深度学习基础模型】ExtractingandComposingRobustFeatureswithDeno
- 基于深度学习的入侵检测系统设计与实现
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型AI大模型企业级应用开发实战计算计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
基于深度学习的入侵检测系统设计与实现关键词:深度学习、入侵检测、网络安全、机器学习、神经网络、特征提取、实时分析文章目录基于深度学习的入侵检测系统设计与实现1.背景介绍1.1网络安全的重要性1.2传统入侵检测系统的局限性1.3深度学习在安全领域的应用前景2.核心概念与联系2.1入侵检测系统(IDS)概述2.2深度学习基础2.3深度学习在入侵检测中的应用3.核心算法原理&具体操作步骤3.1算法原理概
- 【深度学习大模型实例教程:Transformer架构、多模态模型与自监督学习】
生活De°咸鱼
AIGCJava深度学习大数据AIGC
深度学习大模型实例教程:Transformer架构、多模态模型与自监督学习1.深度学习基础概述1.1深度学习的核心概念1.2常见深度学习模型1.3大模型的挑战与解决方案2.数据准备2.1数据处理示例:CIFAR-103.构建深度学习模型4.训练模型5.使用预训练模型(迁移学习)6.Transformer架构6.1Transformer的核心原理6.2Transformer的基本组件6.3Trans
- 《深入浅出AI》前言知识:深度学习基础总结
GoAI
深入浅出AI人工智能深度学习机器学习cnnrnn生成对抗网络神经网络
个人主页:GoAI|公众号:GoAI的学习小屋|交流群:704932595|个人简介:掘金签约作者、百度飞桨PPDE、领航团团长、开源特训营导师、CSDN、阿里云社区人工智能领域博客专家、新星计划计算机视觉方向导师等,专注大数据与人工智能知识分享。AI学习星球推荐:GoAI的学习社区知识星球是一个致力于提供《机器学习|深度学习|CV|NLP|大模型|多模态|AIGC》各个最新AI方向综述、论文等成
- 【深度学习基础】什么是注意力机制
我的青春不太冷
深度学习人工智能注意力机制
文章目录一、注意力机制的核心地位:从补充到主导二、技术突破:从Transformer到多模态融合三、跨领域应用:从NLP到通用人工智能四、未来挑战与趋势结语参考链接注意力机制:深度学习的核心革命与未来基石在深度学习的发展历程中,注意力机制(AttentionMechanism)的引入堪称一场革命。它不仅解决了传统模型的根本性缺陷,更通过动态聚焦关键信息的能力,重塑了人工智能处理复杂任务的范式。本文
- 第2节课:深度学习基础python代码
Lips611
李哥深度学习python深度学习神经网络
目录编译环境:代码:文件:ds_0.py小结:python声明不需要定义,整型和浮点型都是直接给予值,字符串的[-2]代表是列表倒数的某值;同一列表里面可以有各种类型的变量;哈希表的键值对在打印时是调用字典[key],然后输出对应的value文件:judge_0.py小结:python相对于c语言,是将()换成空格和“:”,与此同时判断语句if和else的缩进不同对应着不同层次的判定条件,约等于“
- 深度学习基础知识
namelijink
深度学习人工智能
cuda简介:CUDA(ComputeUnifiedDeviceArchitecture)是由NVIDIA开发的一种并行计算平台和应用程序编程接口(API)。它允许开发人员利用NVIDIA的GPU(图形处理器)来加速各种计算任务,包括科学计算、机器学习、深度学习、数据分析等。NVIDIA是一个全球领先的计算技术公司,专注于设计和制造高性能计算设备。除了生产强大的GPU,NVIDIA还提供与其GPU
- AI学习专题(一)LLM技术路线
王钧石的技术博客
大模型人工智能学习ai
阶段1:AI及大模型基础(1-2个月)数学基础线性代数(矩阵、特征值分解、SVD)概率论与统计(贝叶斯定理、极大似然估计)最优化方法(梯度下降、拉格朗日乘子法)编程&框架Python(NumPy、Pandas、Matplotlib)PyTorch&TensorFlow基础HuggingFaceTransformers入门深度学习基础机器学习基础(监督/无监督学习、正则化、过拟合)反向传播、优化器(
- 2025年最新最全的大模型学习路线规划,对于零基础入门到精通的学习者来说,可以遵循以下阶段进行
程序员辣条
学习大模型学习AI产品经理人工智能LLama大模型大模型教程
2025年最新最全的大模型学习路线规划,对于零基础入门到精通的学习者来说,可以遵循以下阶段进行:一、基础准备阶段数学基础:学习线性代数、微积分、概率论与数理统计等基础知识。这些数学基础对于理解大模型的原理和算法至关重要。编程语言:熟练掌握Python编程,这是大模型开发的首选语言。同时,了解常用的深度学习框架,如TensorFlow和PyTorch。深度学习基础:学习深度学习的基本原理和常用算法,
- AI真的能理解我们这个现实物理世界吗?深度剖析原理、实证及未来走向
AI_DL_CODE
人工智能深度学习AIAI理解世界
摘要:当下,AI与深度学习广泛渗透生活各领域,大模型与海量数据加持下,其是否理解现实物理世界引发热议。文章开篇抛出疑问,随后深入介绍AI深度学习基础,包含神经网络架构、反向传播算法。继而列举AI在物理场景识别、实验数据分析中显露的“理解”迹象,也点明常识性错误、极端场景失效这类反例。从信息论、物理启发式算法剖析理论支撑,探讨融合物理知识路径,并延展至跨学科应用、评估维度、伦理社会问题,最终展望AI
- Kaggle房价预测
一名小菜鸟的学习之路
深度学习pytorch深度学习机器学习python人工智能神经网络
Kaggle房价预测作为深度学习基础篇章的总结,我们将对本章内容学以致用。下面,让我们动手实战一个Kaggle比赛:房价预测。本节将提供未经调优的数据的预处理、模型的设计和超参数的选择。我们希望读者通过动手操作、仔细观察实验现象、认真分析实验结果并不断调整方法,得到令自己满意的结果。%matplotlibinlineimporttorchimporttorch.nnasnnimportnumpya
- 深度学习基础18(多层感知机代码实现)
NDNPOMDFLR
深度学习深度学习python经验分享人工智能神经网络
多层感知机的从零开始实现现在自己实现一个多层感知机。为了与之前softmax回归获得的结果进行比较,将继续使用Fashion-MNIST图像分类数据集importtorchfromtorchimportnnfromd2limporttorchasd2lbatch_size=256train_iter,test_iter=d2l.load_data_fashion_mnist(batch_size)
- 【深度学习基础】线性神经网络 | softmax回归的简洁实现
Francek Chen
PyTorch深度学习深度学习神经网络回归softmax人工智能
【作者主页】FrancekChen【专栏介绍】⌈⌈⌈PyTorch深度学习⌋⌋⌋深度学习(DL,DeepLearning)特指基于深层神经网络模型和方法的机器学习。它是在统计机器学习、人工神经网络等算法模型基础上,结合当代大数据和大算力的发展而发展出来的。深度学习最重要的技术特征是具有自动提取特征的能力。神经网络算法、算力和数据是开展深度学习的三要素。深度学习在计算机视觉、自然语言处理、多模态数据
- 深度学习从入门到精通:全面指南
AI天才研究院
计算大数据AI人工智能AI大模型企业级应用开发实战javapythonjavascriptkotlingolang架构人工智能大厂程序员硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLM系统架构设计软件哲学Agent程序员实现财富自由
《深度学习从入门到精通:全面指南》文章目录《深度学习从入门到精通:全面指南》文章关键词文章摘要引言第一部分:深度学习基础入门第1章:深度学习概述1.1深度学习的基本概念1.2深度学习的发展历程1.3深度学习的基本原理神经网络前向传播反向传播第2章:深度学习框架入门2.1TensorFlow入门TensorFlow环境搭建TensorFlow基本数据结构2.2PyTorch入门PyTorch环境搭建
- 多线程编程之卫生间
周凡杨
java并发卫生间线程厕所
如大家所知,火车上车厢的卫生间很小,每次只能容纳一个人,一个车厢只有一个卫生间,这个卫生间会被多个人同时使用,在实际使用时,当一个人进入卫生间时则会把卫生间锁上,等出来时打开门,下一个人进去把门锁上,如果有一个人在卫生间内部则别人的人发现门是锁的则只能在外面等待。问题分析:首先问题中有两个实体,一个是人,一个是厕所,所以设计程序时就可以设计两个类。人是多数的,厕所只有一个(暂且模拟的是一个车厢)。
- How to Install GUI to Centos Minimal
sunjing
linuxInstallDesktopGUI
http://www.namhuy.net/475/how-to-install-gui-to-centos-minimal.html
I have centos 6.3 minimal running as web server. I’m looking to install gui to my server to vnc to my server. You can insta
- Shell 函数
daizj
shell函数
Shell 函数
linux shell 可以用户定义函数,然后在shell脚本中可以随便调用。
shell中函数的定义格式如下:
[function] funname [()]{
action;
[return int;]
}
说明:
1、可以带function fun() 定义,也可以直接fun() 定义,不带任何参数。
2、参数返回
- Linux服务器新手操作之一
周凡杨
Linux 简单 操作
1.whoami
当一个用户登录Linux系统之后,也许他想知道自己是发哪个用户登录的。
此时可以使用whoami命令。
[ecuser@HA5-DZ05 ~]$ whoami
e
- 浅谈Socket通信(一)
朱辉辉33
socket
在java中ServerSocket用于服务器端,用来监听端口。通过服务器监听,客户端发送请求,双方建立链接后才能通信。当服务器和客户端建立链接后,两边都会产生一个Socket实例,我们可以通过操作Socket来建立通信。
首先我建立一个ServerSocket对象。当然要导入java.net.ServerSocket包
ServerSock
- 关于框架的简单认识
西蜀石兰
框架
入职两个月多,依然是一个不会写代码的小白,每天的工作就是看代码,写wiki。
前端接触CSS、HTML、JS等语言,一直在用的CS模型,自然免不了数据库的链接及使用,真心涉及框架,项目中用到的BootStrap算一个吧,哦,JQuery只能算半个框架吧,我更觉得它是另外一种语言。
后台一直是纯Java代码,涉及的框架是Quzrtz和log4j。
都说学前端的要知道三大框架,目前node.
- You have an error in your SQL syntax; check the manual that corresponds to your
林鹤霄
You have an error in your SQL syntax; check the manual that corresponds to your MySQL server version for the right syntax to use near 'option,changed_ids ) values('0ac91f167f754c8cbac00e9e3dc372
- MySQL5.6的my.ini配置
aigo
mysql
注意:以下配置的服务器硬件是:8核16G内存
[client]
port=3306
[mysql]
default-character-set=utf8
[mysqld]
port=3306
basedir=D:/mysql-5.6.21-win
- mysql 全文模糊查找 便捷解决方案
alxw4616
mysql
mysql 全文模糊查找 便捷解决方案
2013/6/14 by 半仙
[email protected]
目的: 项目需求实现模糊查找.
原则: 查询不能超过 1秒.
问题: 目标表中有超过1千万条记录. 使用like '%str%' 进行模糊查询无法达到性能需求.
解决方案: 使用mysql全文索引.
1.全文索引 : MySQL支持全文索引和搜索功能。MySQL中的全文索
- 自定义数据结构 链表(单项 ,双向,环形)
百合不是茶
单项链表双向链表
链表与动态数组的实现方式差不多, 数组适合快速删除某个元素 链表则可以快速的保存数组并且可以是不连续的
单项链表;数据从第一个指向最后一个
实现代码:
//定义动态链表
clas
- threadLocal实例
bijian1013
javathreadjava多线程threadLocal
实例1:
package com.bijian.thread;
public class MyThread extends Thread {
private static ThreadLocal tl = new ThreadLocal() {
protected synchronized Object initialValue() {
return new Inte
- activemq安全设置—设置admin的用户名和密码
bijian1013
javaactivemq
ActiveMQ使用的是jetty服务器, 打开conf/jetty.xml文件,找到
<bean id="adminSecurityConstraint" class="org.eclipse.jetty.util.security.Constraint">
<p
- 【Java范型一】Java范型详解之范型集合和自定义范型类
bit1129
java
本文详细介绍Java的范型,写一篇关于范型的博客原因有两个,前几天要写个范型方法(返回值根据传入的类型而定),竟然想了半天,最后还是从网上找了个范型方法的写法;再者,前一段时间在看Gson, Gson这个JSON包的精华就在于对范型的优雅简单的处理,看它的源代码就比较迷糊,只其然不知其所以然。所以,还是花点时间系统的整理总结下范型吧。
范型内容
范型集合类
范型类
- 【HBase十二】HFile存储的是一个列族的数据
bit1129
hbase
在HBase中,每个HFile存储的是一个表中一个列族的数据,也就是说,当一个表中有多个列簇时,针对每个列簇插入数据,最后产生的数据是多个HFile,每个对应一个列族,通过如下操作验证
1. 建立一个有两个列族的表
create 'members','colfam1','colfam2'
2. 在members表中的colfam1中插入50*5
- Nginx 官方一个配置实例
ronin47
nginx 配置实例
user www www;
worker_processes 5;
error_log logs/error.log;
pid logs/nginx.pid;
worker_rlimit_nofile 8192;
events {
worker_connections 4096;}
http {
include conf/mim
- java-15.输入一颗二元查找树,将该树转换为它的镜像, 即在转换后的二元查找树中,左子树的结点都大于右子树的结点。 用递归和循环
bylijinnan
java
//use recursion
public static void mirrorHelp1(Node node){
if(node==null)return;
swapChild(node);
mirrorHelp1(node.getLeft());
mirrorHelp1(node.getRight());
}
//use no recursion bu
- 返回null还是empty
bylijinnan
javaapachespring编程
第一个问题,函数是应当返回null还是长度为0的数组(或集合)?
第二个问题,函数输入参数不当时,是异常还是返回null?
先看第一个问题
有两个约定我觉得应当遵守:
1.返回零长度的数组或集合而不是null(详见《Effective Java》)
理由就是,如果返回empty,就可以少了很多not-null判断:
List<Person> list
- [科技与项目]工作流厂商的战略机遇期
comsci
工作流
在新的战略平衡形成之前,这里有一个短暂的战略机遇期,只有大概最短6年,最长14年的时间,这段时间就好像我们森林里面的小动物,在秋天中,必须抓紧一切时间存储坚果一样,否则无法熬过漫长的冬季。。。。
在微软,甲骨文,谷歌,IBM,SONY
- 过度设计-举例
cuityang
过度设计
过度设计,需要更多设计时间和测试成本,如无必要,还是尽量简洁一些好。
未来的事情,比如 访问量,比如数据库的容量,比如是否需要改成分布式 都是无法预料的
再举一个例子,对闰年的判断逻辑:
1、 if($Year%4==0) return True; else return Fasle;
2、if ( ($Year%4==0 &am
- java进阶,《Java性能优化权威指南》试读
darkblue086
java性能优化
记得当年随意读了微软出版社的.NET 2.0应用程序调试,才发现调试器如此强大,应用程序开发调试其实真的简单了很多,不仅仅是因为里面介绍了很多调试器工具的使用,更是因为里面寻找问题并重现问题的思想让我震撼,时隔多年,Java已经如日中天,成为许多大型企业应用的首选,而今天,这本《Java性能优化权威指南》让我再次找到了这种感觉,从不经意的开发过程让我刮目相看,原来性能调优不是简单地看看热点在哪里,
- 网络学习笔记初识OSI七层模型与TCP协议
dcj3sjt126com
学习笔记
协议:在计算机网络中通信各方面所达成的、共同遵守和执行的一系列约定 计算机网络的体系结构:计算机网络的层次结构和各层协议的集合。 两类服务: 面向连接的服务通信双方在通信之前先建立某种状态,并在通信过程中维持这种状态的变化,同时为服务对象预先分配一定的资源。这种服务叫做面向连接的服务。 面向无连接的服务通信双方在通信前后不建立和维持状态,不为服务对象
- mac中用命令行运行mysql
dcj3sjt126com
mysqllinuxmac
参考这篇博客:http://www.cnblogs.com/macro-cheng/archive/2011/10/25/mysql-001.html 感觉workbench不好用(有点先入为主了)。
1,安装mysql
在mysql的官方网站下载 mysql 5.5.23 http://www.mysql.com/downloads/mysql/,根据我的机器的配置情况选择了64
- MongDB查询(1)——基本查询[五]
eksliang
mongodbmongodb 查询mongodb find
MongDB查询
转载请出自出处:http://eksliang.iteye.com/blog/2174452 一、find简介
MongoDB中使用find来进行查询。
API:如下
function ( query , fields , limit , skip, batchSize, options ){.....}
参数含义:
query:查询参数
fie
- base64,加密解密 经融加密,对接
y806839048
经融加密对接
String data0 = new String(Base64.encode(bo.getPaymentResult().getBytes(("GBK"))));
String data1 = new String(Base64.decode(data0.toCharArray()),"GBK");
// 注意编码格式,注意用于加密,解密的要是同
- JavaWeb之JSP概述
ihuning
javaweb
什么是JSP?为什么使用JSP?
JSP表示Java Server Page,即嵌有Java代码的HTML页面。使用JSP是因为在HTML中嵌入Java代码比在Java代码中拼接字符串更容易、更方便和更高效。
JSP起源
在很多动态网页中,绝大部分内容都是固定不变的,只有局部内容需要动态产生和改变。
如果使用Servl
- apple watch 指南
啸笑天
apple
1. 文档
WatchKit Programming Guide(中译在线版 By @CocoaChina) 译文 译者 原文 概览 - 开始为 Apple Watch 进行开发 @星夜暮晨 Overview - Developing for Apple Watch 概览 - 配置 Xcode 项目 - Overview - Configuring Yo
- java经典的基础题目
macroli
java编程
1.列举出 10个JAVA语言的优势 a:免费,开源,跨平台(平台独立性),简单易用,功能完善,面向对象,健壮性,多线程,结构中立,企业应用的成熟平台, 无线应用 2.列举出JAVA中10个面向对象编程的术语 a:包,类,接口,对象,属性,方法,构造器,继承,封装,多态,抽象,范型 3.列举出JAVA中6个比较常用的包 Java.lang;java.util;java.io;java.sql;ja
- 你所不知道神奇的js replace正则表达式
qiaolevip
每天进步一点点学习永无止境纵观千象regex
var v = 'C9CFBAA3CAD0';
console.log(v);
var arr = v.split('');
for (var i = 0; i < arr.length; i ++) {
if (i % 2 == 0) arr[i] = '%' + arr[i];
}
console.log(arr.join(''));
console.log(v.r
- [一起学Hive]之十五-分析Hive表和分区的统计信息(Statistics)
superlxw1234
hivehive分析表hive统计信息hive Statistics
关键字:Hive统计信息、分析Hive表、Hive Statistics
类似于Oracle的分析表,Hive中也提供了分析表和分区的功能,通过自动和手动分析Hive表,将Hive表的一些统计信息存储到元数据中。
表和分区的统计信息主要包括:行数、文件数、原始数据大小、所占存储大小、最后一次操作时间等;
14.1 新表的统计信息
对于一个新创建
- Spring Boot 1.2.5 发布
wiselyman
spring boot
Spring Boot 1.2.5已在7月2日发布,现在可以从spring的maven库和maven中心库下载。
这个版本是一个维护的发布版,主要是一些修复以及将Spring的依赖提升至4.1.7(包含重要的安全修复)。
官方建议所有的Spring Boot用户升级这个版本。
项目首页 | 源