运行环境
该相机标定流程分为python版本与C++版本(需要与opencv进行环境配置);
标定对象
标定对象为存在畸变的普通免驱相机或其他有畸变相机;
流程简述
首先需要使用有畸变的相机拍摄完整的棋盘照片,可用照片数量建议15-25张;拍摄时建议棋盘出现在相机的不同位置,覆盖各个方位和一定的距离段。然后使用已拍摄的照片计算出相机的内外参数,要注意相机的内参、外参、参数格式等。最后使用获得参数进行图像全局矫正或者图像稀疏点的矫正。
python版本
为了使用方便,有照片截取程序与参数求解流程,以及矫正函数使用流程。
5.1照片截取程序
#照片截取程序
import numpy as np
import cv2
import matplotlib.pyplot as plt
cap = cv2.VideoCapture(0)
#cap.set(cv2.CAP_PROP_FRAME_WIDTH,300)
#cap.set(cv2.CAP_PROP_FRAME_HEIGHT,200)
if not cap.isOpened():
raise ValueError("Video is not openning")
cv2.namedWindow('chess',cv2.WINDOW_NORMAL)
count = 0
while(True):
ret, frame = cap.read()
cv2.imshow('chess',frame)
if cv2.waitKey(1) & 0xFF == ord('s'):#当键盘键入"S"会进行一次拍照
cv2.imwrite('/home/pi/Desktop/biaoding'+str(count)+'.jpg',frame)#home/pi/Desktop/biaoding 为照片写入路径
count = count + 1
if cv2.waitKey(1) & 0xFF == ord('q'):
break
cap.release()
cv2.destroyAllWindows()
5.2参数求解程序
#参数求解程序
import numpy as np
import cv2 as cv
import glob
# termination criteria
criteria = (cv.TERM_CRITERIA_EPS + cv.TERM_CRITERIA_MAX_ITER, 20, 0.001)
# prepare object points, like (0,0,0), (1,0,0), (2,0,0) ....,(6,5,0)
objp = np.zeros((11*8,3), np.float32)
objp[:,:2] = np.mgrid[0:11,0:8].T.reshape(-1,2)
# Arrays to store object points and image points from all the images.
objpoints = [] # 3d point in real world space
imgpoints = [] # 2d points in image plane.
images = glob.glob('/home/pi/Desktop/biaoding/*.jpg')
for fname in images:
img = cv.imread(fname)
gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY)
# Find the chess board corners
ret, corners = cv.findChessboardCorners(gray, (11,8), None)
print('0')
# If found, add object points, image points (after refining them)
if ret == True:
print('1')#该输出为方便了解是否在照片中找到棋盘各点,表示该照片是否有效
objpoints.append(objp)
corners2 = cv.cornerSubPix(gray,corners, (11,11), (-1,-1), criteria)
imgpoints.append(corners)
# Draw and display the corners
cv.drawChessboardCorners(img, (11,8), corners2, ret)
cv.imshow('img', img)
cv.waitKey(500)
cv.destroyAllWindows()
print('参数正在求解')
ret, mtx, dist, rvecs, tvecs = cv.calibrateCamera(objpoints, imgpoints, gray.shape[::-1], None, None)
print(mtx)
print(dist)
np.savetxt('/home/pi/Desktop/biaoding/',mtx)#该路径为参数写入路径
np.savetxt('/home/pi/Desktop/biaoding/',dist)
5.3图像矫正
使用 cv2.undistort() 这是最简单的方法。只需使用这个函数和上边得到
的 ROI 对结果进行裁剪。
#undistort方式矫正
img = cv2.imread('left12.jpg')
h, w = img.shape[:2]
newcameramtx, roi=cv2.getOptimalNewCameraMatrix(mtx,dist,(w,h),1,(w,h))
# undistort
dst = cv2.undistort(img, mtx, dist, None, newcameramtx)
# crop the image
x,y,w,h = roi
dst = dst[y:y+h, x:x+w]
cv2.imwrite('calibresult.png',dst)
使用 remapping 我们要找到从畸变图像到非畸变图像的映射方程,再使用重映射方程
# undistort
mapx,mapy = cv2.initUndistortRectifyMap(mtx,dist,None,newcameramtx,(w,h),5)
dst = cv2.remap(img,mapx,mapy,cv2.INTER_LINEAR)
# crop the image
x,y,w,h = roi
dst = dst[y:y+h, x:x+w]
cv2.imwrite('calibresult.png',dst)
#include
#include
#include
#include
#include
#include
#include
#include
using namespace std;
void help(char* argv[])
{
}
int main(int argc, char* argv[])
{
//argc is argument count,argv is argument vector(传入main函数的参数序列或指针
//argv[0]一定是程序名称,并且包含程序所在的完整路径
int n_boards = 0; // initial n_board,which will determined by input
float image_sf = 1.0f;//f确定格式
float delay = 1.f;
int board_w = 0;
int board_h = 0;
if (argc < 4 || argc > 6) {
cout << "\nERROR: Wrong number of input parameters";
help(argv);
return -1;
}
board_w = atoi(argv[1]);
board_h = atoi(argv[2]);
n_boards = atoi(argv[3]);
if (argc > 4) delay = atof(argv[4]);
if (argc > 5) image_sf = atof(argv[5]);
int board_n = board_w * board_h;
cv::Size board_sz = cv::Size(board_w, board_h);
cv::VideoCapture capture(1);
if (!capture.isOpened()) {
cout << "\nCouldn't open the camera\n";
help(argv);
return -1;
}
// 分配内存
//
vector< vector<cv::Point2f> > image_points;
vector< vector<cv::Point3f> > object_points;
// Capture corner views: loop until we've got n_boards successful
// captures (all corners on the board are found).
double last_captured_timestamp = 0;
cv::Size image_size;
while (image_points.size() < (size_t)n_boards) {
cv::Mat image0, image;
capture >> image0;
image_size = image0.size();
cv::resize(image0, image, cv::Size(), image_sf, image_sf, cv::INTER_LINEAR);
// Find the board
vector<cv::Point2f> corners;
bool found = cv::findChessboardCorners(image, board_sz, corners);
// Draw it
drawChessboardCorners(image, board_sz, corners, found);
// If we got a good board, add it to our data
double timestamp = (double)clock() / CLOCKS_PER_SEC;
if (found && timestamp - last_captured_timestamp > 1) {
last_captured_timestamp = timestamp;
image ^= cv::Scalar::all(255);
cv::Mat mcorners(corners); // do not copy the data
mcorners *= (1. / image_sf); // scale the corner coordinates
image_points.push_back(corners);
object_points.push_back(vector<cv::Point3f>());
vector<cv::Point3f>& opts = object_points.back();
opts.resize(board_n);
for (int j = 0; j < board_n; j++) {
opts[j] = cv::Point3f((float)(j / board_w), (float)(j % board_w), 0.f);
}
cout << "Collected our " << (int)image_points.size() <<
" of " << n_boards << " needed chessboard images\n" << endl;
}
cv::imshow("Calibration", image); //show in color if we did collect the image
if ((cv::waitKey(30) & 255) == 27)
return -1;
}
// end collectiom
cv::destroyWindow("Calibration");
cout << "\n\n*** CALIBRATING THE CAMERA...\n" << endl;
// start calibrat the camera
cv::Mat intrinsic_matrix, distortion_coeffs;
double err = cv::calibrateCamera(
object_points,
image_points,
image_size,
intrinsic_matrix,
distortion_coeffs,
cv::noArray(),
cv::noArray(),
cv::CALIB_ZERO_TANGENT_DIST | cv::CALIB_FIX_PRINCIPAL_POINT
);
// save the intrinsics and distortions
cout << " *** DONE!\n\nReprojection error is " << err <<
"\nStoring Intrinsics.xml and Distortions.xml files\n\n";
cv::FileStorage fs("intrinsics.xml", cv::FileStorage::WRITE);
fs << "image_width" << image_size.width << "image_height" << image_size.height
<< "camera_matrix" << intrinsic_matrix << "distortion_coefficients"
<< distortion_coeffs;
fs.release();
//loading the date back
fs.open("intrinsics.xml", cv::FileStorage::READ);
cout << "\nimage width: " << (int)fs["image_width"];
cout << "\nimage height: " << (int)fs["image_height"];
cv::Mat intrinsic_matrix_loaded, distortion_coeffs_loaded;
fs["camera_matrix"] >> intrinsic_matrix_loaded;
fs["distortion_coefficients"] >> distortion_coeffs_loaded;
cout << "\nintrinsic matrix:" << intrinsic_matrix_loaded;
cout << "\ndistortion coefficients: " << distortion_coeffs_loaded << endl;
//build the undistort map which we will use for all subsequent frames
cv::Mat map1, map2;
cv::initUndistortRectifyMap(
intrinsic_matrix_loaded,
distortion_coeffs_loaded,
cv::Mat(),
intrinsic_matrix_loaded,
image_size,
CV_16SC2,
map1,
map2
);
//just run the camera to the screen,now showing the raw and the undistorted imamge
for (;;) {
cv::Mat image, image0;
capture >> image0;
if (image0.empty()) break;
cv::remap(
image0,
image,
map1,
map2,
cv::INTER_LINEAR,
cv::BORDER_CONSTANT,
cv::Scalar()
);
cv::imshow("undiatorted", image);
if ((cv::waitKey(30) & 255) == 27) break;
}
return 0;
}
在程序运行之前需要对argc进行命令参数传值,传递参数视个人具体情况而定
cv::undistortPoints(inputDistortedPoints, outputUndistortedPoints, cameraMatrix, distCoeffs)
使用的输入会使得矫正后的数据过小,影响使用,正确使用方法为
cv::undistortPoints(inputDistortedPoints, outputUndistortedPoints, cameraMatrix, distCoeffs, cv::noArray(), cameraMatrix);
重复输入cameraMatrix该矩阵可以解决问题
如果需要对图像点进行运算,应当在图像矫正后进行;在图像矫正之前不应该进行改变图像位置点的运算,这样会导致图像点矫正后出现混乱,要切记