NanoDet:这是个小于4M超轻量目标检测模型

摘要:NanoDet 是一个速度超快和轻量级的移动端 Anchor-free 目标检测模型。

前言

YOLO、SSD、Fast R-CNN等模型在目标检测方面速度较快和精度较高,但是这些模型比较大,不太适合移植到移动端或嵌入式设备;轻量级模型 NanoDet-m,对单阶段检测模型三大模块(Head、Neck、Backbone)进行轻量化,目标加检测速度很快;模型文件大小仅几兆(小于4M)。

NanoDet作者开源代码地址:https://github.com/RangiLyu/nanodet (致敬)

基于NanoDet项目进行小裁剪,专门用来实现Python语言、PyTorch 版本的代码地址:https://github.com/guo-pu/NanoDet-PyTorch

下载直接能使用,支持图片、视频文件、摄像头实时目标检测

先看一下NanoDet目标检测的效果:

同时检测多辆汽车:

NanoDet:这是个小于4M超轻量目标检测模型_第1张图片

查看多目标、目标之间重叠、同时存在小目标和大目标的检测效果:

NanoDet:这是个小于4M超轻量目标检测模型_第2张图片

NanoDet 模型介绍

NanoDet是一种 FCOS 式的单阶段 anchor-free 目标检测模型,它使用 ATSS 进行目标采样,使用 Generalized Focal Loss 损失函数执行分类和边框回归(box regression)。

1)NanoDet 模型性能

NanoDet-m模型和YoloV3-Tiny、YoloV4-Tiny作对比:

备注:以上性能基于 ncnn 和麒麟 980 (4xA76+4xA55) ARM CPU 获得的。使用 COCO mAP (0.5:0.95) 作为评估指标,兼顾检测和定位的精度,在 COCO val 5000 张图片上测试,并且没有使用 Testing-Time-Augmentation。

NanoDet作者将 ncnn 部署到手机(基于 ARM 架构的 CPU 麒麟 980,4 个 A76 核心和 4 个 A55 核心)上之后跑了一下 benchmark,模型前向计算时间只要 10 毫秒左右,而 yolov3 和 v4 tiny 均在 30 毫秒的量级。在安卓摄像头 demo app 上,算上图片预处理、检测框后处理以及绘制检测框的时间,NanoDet也能轻松跑到 40+FPS。

2)NanoDet 模型架构

NanoDet:这是个小于4M超轻量目标检测模型_第3张图片

3)NanoDet损失函数

NanoDet使用了李翔等人提出的 Generalized Focal Loss 损失函数。该函数能够去掉 FCOS 的 Centerness 分支,省去这一分支上的大量卷积,从而减少检测头的计算开销,非常适合移动端的轻量化部署。

NanoDet:这是个小于4M超轻量目标检测模型_第4张图片

​详细请参考:Generalized Focal Loss:Learning Qualified and Distributed Bounding Boxes for Dense Object Detection

4)NanoDet 优势

NanoDet是一个速度超快和轻量级的移动端 Anchor-free 目标检测模型。该模型具备以下优势:

  • 超轻量级:模型文件大小仅几兆(小于4M——nanodet_m.pth);
  • 速度超快:在移动 ARM CPU 上的速度达到 97fps(10.23ms);
  • 训练友好:GPU 内存成本比其他模型低得多。GTX1060 6G 上的 Batch-size 为 80 即可运行;
  • 方便部署:提供了基于 ncnn 推理框架的 C++ 实现和 Android demo。

基于PyTorch 实现NanoDet

基于NanoDet项目进行小裁剪,专门用来实现Python语言、PyTorch 版本的代码地址:

1)NanoDet目标检测效果

同时检测出四位少年

NanoDet:这是个小于4M超轻量目标检测模型_第5张图片

在复杂街道中,检测出行人、汽车:

NanoDet:这是个小于4M超轻量目标检测模型_第6张图片

通过测试发现NanoDet确实很快,但识别精度和效果比YOLOv4差不少的。

2)环境参数

测试环境参数

系统:Windows 编程语言:Python 3.8 整合开发环境:Anaconda

深度学习框架:PyTorch1.7.0+cu101 (torch>=1.3 即可) 开发代码IDE:PyCharm

开发具体环境要求如下:

  • Cython
  • termcolor
  • numpy
  • torch>=1.3
  • torchvision
  • tensorboard
  • pycocotools
  • matplotlib
  • pyaml
  • opencv-python
  • tqdm

通常测试感觉GPU加速(显卡驱动、cudatoolkit 、cudnn)、PyTorch、pycocotools相对难装一点

Windows开发环境安装可以参考:

安装cudatoolkit 10.1、cudnn7.6请参考

https://blog.csdn.net/qq_41204464/article/details/108807165

安装PyTorch请参考 https://blog.csdn.net/u014723479/article/details/103001861

安装pycocotools请参考 https://blog.csdn.net/weixin_41166529/article/details/109997105

3)体验NanoDet目标检测

下载代码,打开工程

先到githug下载代码,然后解压工程,然后使用PyCharm工具打开工程;

githug代码下载地址:https://github.com/guo-pu/NanoDet-PyTorch

说明:该代码是基于NanoDet项目进行小裁剪,专门用来实现Python语言、PyTorch 版本的代码

NanoDet作者开源代码地址https://github.com/RangiLyu/nanodet (致敬)

使用PyCharm工具打开工程

选择开发环境

文件(file)——>设置(setting)——>项目(Project)——>Project Interpreters 选择搭建的开发环境;

NanoDet:这是个小于4M超轻量目标检测模型_第7张图片

然后先点击Apply,等待加载完成,再点击OK;

进行目标检测

具体命令请参考:

NanoDet:这是个小于4M超轻量目标检测模型_第8张图片

【目标检测-图片】

NanoDet:这是个小于4M超轻量目标检测模型_第9张图片

【目标检测-视频文件】

检测的是1080*1920的图片,很流畅毫不卡顿,就是目前识别精度不太高

NanoDet:这是个小于4M超轻量目标检测模型_第10张图片

4)调用模型的核心代码

detect_main.py代码:

NanoDet:这是个小于4M超轻量目标检测模型_第11张图片

NanoDet:这是个小于4M超轻量目标检测模型_第12张图片

NanoDet:这是个小于4M超轻量目标检测模型_第13张图片

NanoDet:这是个小于4M超轻量目标检测模型_第14张图片

本文分享自华为云社区《目标检测模型NanoDet(超轻量,速度很快)介绍和PyTorch版本实践》,原文作者:一颗小树x。

点击关注,第一时间了解华为云新鲜技术~

你可能感兴趣的:(pytorch,目标检测)