AbstractIoAcceptor类继承自AbstractIoService基类,并实现了IoAcceptor接口,它主要的成员变量是本地绑定地址。
private
final
List
<
SocketAddress
>
defaultLocalAddresses
=
new
ArrayList
<
SocketAddress
>
();
private
final
List
<
SocketAddress
>
unmodifiableDefaultLocalAddresses
=
Collections.unmodifiableList(defaultLocalAddresses);
private
final
Set
<
SocketAddress
>
boundAddresses
=
new
HashSet
<
SocketAddress
>
();
在调用bind或unbind方法时需要先获取绑定锁bindLock,具体的绑定操作还是在bind0这个方法中实现的。一旦绑定成功后,就会向服务监听者发出服务激活的事件(ServiceActivated),同理,解除绑定也是在unbind0这个方法中具体实现的。一旦解除绑定成功后,就会向服务监听者发出服务激活的事件(ServiceDeActivated)。
AbstractIoConnector类继承自AbstractIoService基类,并实现了IoConnect接口,连接超时检查间隔时间默认是50毫秒,超时时间默认为1分钟,用户可以自行配置。此类中重要的方法就是connect方法,其中调用了具体的连接逻辑实现connect0,
protected
abstract
ConnectFuture connect0(SocketAddress remoteAddress,
SocketAddress localAddress, IoSessionInitializer
<?
extends
ConnectFuture
>
sessionInitializer);
AbstractIoConnector在AbstractIoService的基础上,在会话初始化结束时增加了一个功能,就是加入了一个监听者,当连接请求被取消时立即结束此会话。
protected
final
void
finishSessionInitialization0(
final
IoSession session, IoFuture future) {
//
In case that ConnectFuture.cancel() is invoked before
//
setSession() is invoked, add a listener that closes the
//
connection immediately on cancellation.
future.addListener(
new
IoFutureListener
<
ConnectFuture
>
() {
public
void
operationComplete(ConnectFuture future) {
if
(future.isCanceled()) {
session.close();
}
}
});
}
下面再来看一个IoProcessor接口的基本实现类SimpleIoProcessorPool,它的泛型参数是AbstractIoSession的子类,表示此Processor管理的具体会话类型。并且这个类还实现了池化,它会将多个IoSession分布到多个IoProcessor上去管理。下面是文档中给出的一个示例:
//
Create a shared pool.
SimpleIoProcessorPool
<
NioSession
>
pool
=
new
SimpleIoProcessorPool
<
NioSession
>
(NioProcessor.
class
,
16
);
//
Create two services that share the same pool.
SocketAcceptor acceptor
=
new
NioSocketAcceptor(pool);
SocketConnector connector
=
new
NioSocketConnector(pool);
//
Release related resources.
connector.dispose();
acceptor.dispose();
pool.dispose();
与Processor池有关的包括如下这些成员变量:
private
static
final
int
DEFAULT_SIZE
=
Runtime.getRuntime().availableProcessors()
+
1
;
//
处理池大小,默认是处理器数+1, 便于多核分布处理
private
final
IoProcessor
<
T
>
[] pool;
//
IoProcessor池
private
final
AtomicInteger processorDistributor
=
new
AtomicInteger();
Processor池的构造过程,其中有三种构造函数供选择来构造一个Processor :
- 带参数 ExecutorService 的构造函数.
- 带参数为 Executor的构造函数.
- 默认构造函数
pool
=
new
IoProcessor[size];
//
构建池
boolean
success
=
false
;
try
{
for
(
int
i
=
0
; i
<
pool.length; i
++
) {
IoProcessor
<
T
>
processor
=
null
;
//
有三种构造函数供选择来构造一个Processor
try
{
try
{
processor
=
processorType.getConstructor(ExecutorService.
class
).newInstance(executor);
}
catch
(NoSuchMethodException e) {
//
To the next step
}
if
(processor
==
null
) {
try
{
processor
=
processorType.getConstructor(Executor.
class
).newInstance(executor);
}
catch
(NoSuchMethodException e) {
//
To the next step
}
}
if
(processor
==
null
) {
try
{
processor
=
processorType.getConstructor().newInstance();
}
catch
(NoSuchMethodException e) {
//
To the next step
}
}
}
catch
(RuntimeException e) {
throw
e;
}
catch
(Exception e) {
throw
new
RuntimeIoException(
"
Failed to create a new instance of
"
+
processorType.getName(), e);
}
pool[i]
=
processor;
}
success
=
true
;
}
finally
{
if
(
!
success) {
dispose();
}
}
从Processor池中分配一个processor的过程,注意一个processor是可以同时管理多个session的。
private
IoProcessor
<
T
>
getProcessor(T session)
{
//
返回session所在的processor,若没分配,则为之分配一个
IoProcessor
<
T
>
p
=
(IoProcessor
<
T
>
) session.getAttribute(PROCESSOR);
//
看session的属性中是否保存对应的Processor
if
(p
==
null
)
{
//
还没为此session分配processor
p
=
nextProcessor();
//
从池中取一个processor
IoProcessor
<
T
>
oldp
=
(IoProcessor
<
T
>
) session.setAttributeIfAbsent(PROCESSOR, p);
if
(oldp
!=
null
)
{
//
原来的processor
p
=
oldp;
}
}
return
p;
}
private
IoProcessor
<
T
>
nextProcessor()
{
//
从池中分配一个Processor
checkDisposal();
return
pool[Math.abs(processorDistributor.getAndIncrement())
%
pool.length];
}
作者:phinecos(洞庭散人)
出处:http://phinecos.cnblogs.com/
本文版权归作者和博客园共有,欢迎转载,但请保留此段声明,并在文章页面明显位置给出原文连接。