Transformer_XL原理和code

前言

目前在NLP领域中,处理语言建模问题有两种最先进的架构:RNN和Transformer。RNN按照序列顺序逐个学习输入的单词或字符之间的关系,而Transformer则接收一整段序列,然后使用self-attention机制来学习它们之间的依赖关系。这两种架构目前来看都取得了令人瞩目的成就,但它们都局限在捕捉长期依赖性上。

为了解决这一问题,CMU联合Google Brain在2019年1月推出的一篇新论文《Transformer-XL:Attentive Language Models beyond a Fixed-Length Context》同时结合了RNN序列建模和Transformer自注意力机制的优点,在输入数据的每个段上使用Transformer的注意力模块,并使用循环机制来学习连续段之间的依赖关系。Transformer-XL在多种语言建模数据集(如单词级别的enwik8和字符级别的text8)上实现了目前的SoTA效果,且该模型在推理阶段速度更快,比之前最先进的利用Transformer进行语言建模的方法快300~1800倍。 同时,该论文也放出了其配套源码(包括TensorFlow和PyTorch的)、预训练模型及在各个数据集上训练的超参数,可以说是非常良心了~造福我等伸手党!

本文将主要针对模型原理及其PyTorch实现进行逐一对照解读,因笔者能力有限,如有不详尽之处,可移步文末的传送门进行详细阅读,并欢迎指出~

一. 回顾Transformer

在NLP领域中,一种对语言建模的最常用模型就是RNN,它可以捕捉单词之间的依赖关系。但因为梯度消失和爆炸的问题,RNN变得非常难以训练,LSTM单元和梯度裁剪方法的提出也不足以解决此类问题。同时RNN网络的计算速度往往很慢,其学习长期依赖的能力也较为有限(论文中提到,LSTM语言模型平均只能建模200个上下文词语)。

2017年6月,Google Brain在论文《Attention Is All You Need》中提出的Transformer架构,完全摒弃了RNN的循环机制,采用一种self-attention的方式进行全局处理。其接收一整段序列,并使用三个可训练的权重矩阵——Query、Key和Value来一次性学习输入序列中各个部分之间的依赖关系。Transformer网络由多个层组成,每个层都由多头注意力机制和前馈网络构成。由于在全局进行注意力机制的计算,忽略了序列中最重要的位置信息。Transformer为输入添加了位置编码(Positional Encoding),使用正弦函数完成,为每个部分的位置生成位置向量,不需要学习,用于帮助网络学习其位置信息。其示意如下图所示:
Transformer

二. vanilla Transformer

为何要提这个模型?因为Transformer-XL是基于这个模型进行的改进。

Al-Rfou等人基于Transformer提出了一种训练语言模型的方法( https://arxiv.org/abs/1808.04444 ),来根据之前的字符预测片段中的下一个字符。例如,它使用x1,x2,...,xn−1预测字符xn,而在xn之后的序列则被mask掉。论文中使用64层模型,并仅限于处理 512个字符这种相对较短的输入,因此它将输入分成段,并分别从每个段中进行学习,如下图所示。 在测试阶段如需处理较长的输入,该模型会在每一步中将输入向右移动一个字符,以此实现对单个字符的预测。

vanilla Transformer示意图

该模型在常用的数据集如enwik8和text8上的表现比RNN模型要好,但它仍有以下两个缺点:

a. 上下文长度受限:字符之间的最大依赖距离受输入长度的限制,模型看不到出现在几个句子之前的单词。
b. 上下文碎片:对于长度超过512个字符的文本,都是从头开始单独训练的。段与段之间没有上下文依赖性,会让训练效率低下,也会影响模型的性能。
c. 推理速度慢:在测试阶段,每次预测下一个单词,都需要重新构建一遍上下文,并从头开始计算,这样的计算速度非常慢。

三. Transformer-XL

Transformer-XL架构在vanilla Transformer的基础上引入了两点创新:循环机制(Recurrence Mechanism)和相对位置编码(Relative Positional Encoding),以克服vanilla Transformer的缺点。与vanilla Transformer相比,Transformer-XL的另一个优势是它可以被用于单词级和字符级的语言建模。

1. 引入循环机制

与vanilla Transformer的基本思路一样,Transformer-XL仍然是使用分段的方式进行建模,但其与vanilla Transformer的本质不同是在于引入了段与段之间的循环机制,使得当前段在建模的时候能够利用之前段的信息来实现长期依赖性。如下图所示:

在训练阶段,处理后面的段时,每个隐藏层都会接收两个输入:

该段的前面隐藏层的输出,与vanilla Transformer相同(上图的灰色线)。
前面段的隐藏层的输出(上图的绿色线),可以使模型创建长期依赖关系。
这两个输入会被拼接,然后用于计算当前段的Key和Value矩阵。对于某个段的某一层的具体计算公式如下:

引入循环机制后的计算方式

其中,τ
τ表示第几段,n
n表示第几层,h
h表示隐层的输出。SG(⋅)
SG(⋅)表示停止计算梯度,[hu∘hv]
[h 
u
​    
 ∘h 
v
​    
 ]表示在长度维度上的两个隐层的拼接,W.

.
​    
 是模型参数。乍一看与Transformer中的计算公式很像,唯一关键的不同就在于Key和Value矩阵的计算上,即knτ+1

τ+1
n
​    
 和vnτ+1

τ+1
n
​    
 ,它们基于的是扩展后的上下文隐层状态h˜n−1τ+1
h
~
τ
+
1
n

1
h
~
  
τ+1
n−1
​    
 进行计算,hn−1τ
h
τ
n

1

τ
n−1
​    
 是之前段的缓存。

原则上只要GPU内存允许,该方法可以利用前面更多段的信息,测试阶段也可以获得更长的依赖。

在测试阶段,与vanilla Transformer相比,其速度也会更快。在vanilla Transformer中,一次只能前进一个step,并且需要重新构建段,并全部从头开始计算;而在Transformer-XL中,每次可以前进一整个段,并利用之前段的数据来预测当前段的输出。

2. 相对位置编码

在Transformer中,一个重要的地方在于其考虑了序列的位置信息。在分段的情况下,如果仅仅对于每个段仍直接使用Transformer中的位置编码,即每个不同段在同一个位置上的表示使用相同的位置编码,就会出现问题。比如,第i−2和第i−1段的第一个位置将具有相同的位置编码,但它们对于第i段的建模重要性显然并不相同(例如第i−2段中的第一个位置重要性可能要低一些)。因此,需要对这种位置进行区分。

论文对于这个问题,提出了一种新的位置编码的方式,即会根据词之间的相对距离而非像Transformer中的绝对位置进行编码。在Transformer中,第一层的计算查询qTi和键kj之间的attention分数的方式为:
Transformer的attention计算公式分解

其中,Exi是词i的embedding,Exj是词j的embedding,Ui和Uj是位置向量,这个式子实际上是(Wq(Exi+Ui))T⋅(Wk(Exj+Uj))的展开,就是Transformer中的标准格式。

在Transformer-XL中,对上述的attention计算方式进行了变换,转为相对位置的计算,而且不仅仅在第一层这么计算,在每一层都是这样计算。
Transformer-XL的attention计算公式分解

对比来看,主要有三点变化:

在(b)和(d)这两项中,将所有绝对位置向量Uj都转为相对位置向量Ri−j,与Transformer一样,这是一个固定的编码向量,不需要学习。
在(c)这一项中,将查询的UTiWTq向量转为一个需要学习的参数向量u,因为在考虑相对位置的时候,不需要查询的绝对位置i
i,因此对于任意的i
i,都可以采用同样的向量。同理,在(d)这一项中,也将查询的UTiWTq
 向量转为另一个需要学习的参数向量v。
将键的权重变换矩阵Wk 转为Wk,E和Wk,R,分别作为content-based key vectors和location-based key vectors。
从另一个角度来解读这个公式的话,可以将attention的计算分为如下四个部分:

a. 基于内容的“寻址”,即没有添加原始位置编码的原始分数。
b. 基于内容的位置偏置,即相对于当前内容的位置偏差。
c. 全局的内容偏置,用于衡量key的重要性。
d. 全局的位置偏置,根据query和key之间的距离调整重要性。

3. 整体计算公式

结合上面两个创新点,将Transformer-XL模型的整体计算公式整理如下,这里考虑一个N层的只有一个注意力头的模型:
Transformer-XL的整体计算公式

其中,τ代表第几段,n代表第几层,h0τ:=Esτ定义为第τ段的词向量序列。值得一提的是,计算A矩阵的时候,需要对所有的i−j计算Wnk,RRi−j,如果直接按照公式计算的话,计算时间是O(length)2
2 ,而实际上i−j的范围只从0 ~ length,因此可以先计算好这length个向量,然后在实际计算A
A矩阵时直接取用即可。具体的,设M和L分别为memory和当前段序列的长度,则i−j的范围也就为0 ~ M+L−1。下面的Q矩阵中的每一行都代表着Wk,RRi−j中一个i−j的可能性,即Qk=Wk,RRM+L−1−k 。

Q矩阵则对于上面公式中的(b)项,即qTiWk,RRi−j,其构成的所有可能向量的矩阵为B矩阵,其形状为L∗(M+L),这是我们最终需要的(b)项的attention结果。
B矩阵我们进一步定义B˜ 矩阵为如下:
B矩阵的变换

可见,需要的B矩阵的每一行只是B˜ 的向左shift而已。因此,可以直接利用矩阵乘法计算B˜即可。设Ri−j的维度为dR,qi 的维度为dq ,Wk,R矩阵的维度为dq∗dR,则直接计算矩阵B的时间复杂度为2∗dq∗dR∗L∗(M+L),而计算B˜ 的时间复杂度为L∗dq∗(M+L)+dq∗dR∗(M+L),计算量明显不是一个量级(后者要快很多)。

同理,对于(d)项来说,可以对所有的i−j定义需要的矩阵D为L∗(M+L):
D矩阵

可以用如下的d˜ 来进行shift得到:

D矩阵的变换

四. PyTorch实现

笔者在这里主要研究的是核心模型部分,将针对关键的实现细节进行剖析,想要看完整代码的读者请戳这里。

  1. 首先来看RelativePositionalEmbedding部分。
class PositionalEmbedding(nn.Module):
    def __init__(self, demb):
        super(PositionalEmbedding, self).__init__()
        self.demb = demb
        inv_freq = 1 / (10000 ** (torch.arange(0.0, demb, 2.0) / demb))

    def forward(self, pos_seq):
        sinusoid_inp = torch.ger(pos_seq, self.inv_freq)
        pos_emb = torch.cat([sinusoid_inp.sin(), sinusoid_inp.cos()], dim=-1)
        return pos_emb[:,None,:]

这里的demb是相对位置编码的维度,pos_seq是序列的位置向量,在代码里面是torch.arange(klen-1, -1, -1.0),其中的klen是mlen+qlen,从名称和之前的原理介绍可知这里的mlen是memory的长度,qlen是query的长度,这两者组成了key的长度。最终返回的即是R
R向量矩阵,可见是不需要学习的。

接着来看MultiHeadAttention的部分,为了叙述方便,这里的MultiHeadAttn是源代码中的RelMultiHeadAttn和RelPartialLearnableMultiHeadAttn的整合,也即一层self-attention的计算方式。
 


class MultiHeadAttn(nn.Module):
    def __init__(self, n_head, d_model, d_head, dropout, dropatt=0,
                 tgt_len=None, ext_len=None, mem_len=None, pre_lnorm=False):
        super(MultiHeadAttn, self).__init__()

		self.n_head = n_head
        self.d_model = d_model
        self.d_head = d_head
        self.dropout = dropout

        self.qkv_net = nn.Linear(d_model, 3 * n_head * d_head, bias=False)

        self.drop = nn.Dropout(dropout)
        self.dropatt = nn.Dropout(dropatt)
        self.o_net = nn.Linear(n_head * d_head, d_model, bias=False)

        self.layer_norm = nn.LayerNorm(d_model)

        self.scale = 1 / (d_head ** 0.5)

        self.pre_lnorm = pre_lnorm

        self.r_net = nn.Linear(self.d_model, self.n_head * self.d_head, bias=False)

		def _rel_shift(self, x, zero_triu=False):
	        zero_pad = torch.zeros((x.size(0), 1, *x.size()[2:]),
	                               device=x.device, dtype=x.dtype)
	        x_padded = torch.cat([zero_pad, x], dim=1)
	
	        x_padded = x_padded.view(x.size(1) + 1, x.size(0), *x.size()[2:])
	
	        x = x_padded[1:].view_as(x)
	
	        if zero_triu:
	            ones = torch.ones((x.size(0), x.size(1)))
	            x = x * torch.tril(ones, x.size(1) - x.size(0))[:,:,None,None]
	
	        return x

        def forward(self, w, r, r_w_bias, r_r_bias, attn_mask=None, mems=None):
	        qlen, rlen, bsz = w.size(0), r.size(0), w.size(1)
	
	        if mems is not None:
	            cat = torch.cat([mems, w], 0)
	            if self.pre_lnorm:
	                w_heads = self.qkv_net(self.layer_norm(cat))
	            else:
	                w_heads = self.qkv_net(cat)
	            r_head_k = self.r_net(r)
	
	            w_head_q, w_head_k, w_head_v = torch.chunk(w_heads, 3, dim=-1)
	            w_head_q = w_head_q[-qlen:]
	        else:
	            if self.pre_lnorm:
	                w_heads = self.qkv_net(self.layer_norm(w))
	            else:
	                w_heads = self.qkv_net(w)
	            r_head_k = self.r_net(r)
	
	            w_head_q, w_head_k, w_head_v = torch.chunk(w_heads, 3, dim=-1)
	
	        klen = w_head_k.size(0)
	
	        w_head_q = w_head_q.view(qlen, bsz, self.n_head, self.d_head)           # qlen x bsz x n_head x d_head
	        w_head_k = w_head_k.view(klen, bsz, self.n_head, self.d_head)           # qlen x bsz x n_head x d_head
	        w_head_v = w_head_v.view(klen, bsz, self.n_head, self.d_head)           # qlen x bsz x n_head x d_head
	
	        r_head_k = r_head_k.view(rlen, self.n_head, self.d_head)                # qlen x n_head x d_head
	
	        #### compute attention score
	        rw_head_q = w_head_q + r_w_bias                                         # qlen x bsz x n_head x d_head
	        AC = torch.einsum('ibnd,jbnd->ijbn', (rw_head_q, w_head_k))             # qlen x klen x bsz x n_head
	
	        rr_head_q = w_head_q + r_r_bias
	        BD = torch.einsum('ibnd,jnd->ijbn', (rr_head_q, r_head_k))              # qlen x klen x bsz x n_head
	        BD = self._rel_shift(BD)
	
	        # [qlen x klen x bsz x n_head]
	        attn_score = AC + BD
	        attn_score.mul_(self.scale)
	
	        #### compute attention probability
	        if attn_mask is not None and attn_mask.any().item():
	            if attn_mask.dim() == 2:
	                attn_score = attn_score.float().masked_fill(
	                    attn_mask[None,:,:,None], -float('inf')).type_as(attn_score)
	            elif attn_mask.dim() == 3:
	                attn_score = attn_score.float().masked_fill(
	                    attn_mask[:,:,:,None], -float('inf')).type_as(attn_score)
	
	        # [qlen x klen x bsz x n_head]
	        attn_prob = F.softmax(attn_score, dim=1)
	        attn_prob = self.dropatt(attn_prob)
	
	        #### compute attention vector
	        attn_vec = torch.einsum('ijbn,jbnd->ibnd', (attn_prob, w_head_v))
	
	        # [qlen x bsz x n_head x d_head]
	        attn_vec = attn_vec.contiguous().view(
	            attn_vec.size(0), attn_vec.size(1), self.n_head * self.d_head)
	
	        ##### linear projection
	        attn_out = self.o_net(attn_vec)
	        attn_out = self.drop(attn_out)
	
	        if self.pre_lnorm:
	            ##### residual connection
	            output = w + attn_out
	        else:
	            ##### residual connection + layer normalization
	            output = self.layer_norm(w + attn_out)
	
	        return output

其中n_head,d_model,d_head分别表示注意力头的个数,模型的隐层维度,每个头的隐层维度。qkv_net是用于计算query、key和value变换的参数矩阵Wq,Wk,E,Wv ,与标准的Transformer中一致,o_net是用于将所有注意力头的结果拼接后再变换到模型维度的参数矩阵,layer_norm是LayerNormalization层,r_net是用于计算relative position embedding变换的参数矩阵Wk,R。

在前向计算的过程中,w和r分别是上一层的输出以及RelativePositionEmbedding,r_w_bias和r_r_bias分别是u
u向量和v向量,AC是前面公式中的(a)项和(c)项,BD是前面公式中的(b)项和(d)项,根据前面讲的快速计算带有相对位置的项,这里的BD需要进行偏移,即_rel_shift,经过笔者的演算,发现这里经过此函数后的BD并不是想要的B矩阵,其在B矩阵的(M+1)对角线(设主对角线为0,正数即为向右上偏移的量)的右上还有元素,不过后面紧接着就进行了mask。这里的attn_mask即为torch.triu(word_emb.new_ones(qlen, klen), diagonal=1+mlen).byte()[:,:,None]。再往后就是标准的Transformer中的add&norm环节了,就不再赘述。

最后来看memory的更新过程:
 

def _update_mems(self, hids, mems, qlen, mlen):
    # does not deal with None
    if mems is None: return None

    # mems is not None
    assert len(hids) == len(mems), 'len(hids) != len(mems)'

    # There are `mlen + qlen` steps that can be cached into mems
    # For the next step, the last `ext_len` of the `qlen` tokens
    # will be used as the extended context. Hence, we only cache
    # the tokens from `mlen + qlen - self.ext_len - self.mem_len`
    # to `mlen + qlen - self.ext_len`.
    with torch.no_grad():
        new_mems = []
        end_idx = mlen + max(0, qlen - 0 - self.ext_len)
        beg_idx = max(0, end_idx - self.mem_len)
        for i in range(len(hids)):

            cat = torch.cat([mems[i], hids[i]], dim=0)
            new_mems.append(cat[beg_idx:end_idx].detach())

    return new_mems

这里的hids是当前段每层的输出,mems为当前段每层依赖的memory,qlen为序列长度,mlen为当前段依赖的memory的长度。

从代码来看的话,前面的循环示意图似乎有些问题?感觉在训练阶段,对于每个段里面的第二个位置开始的点,都应该连到第一个位置连到的最前面memory?因为用的是同样长度的memory。

五. 实验结果

1. 语言建模指标

在最关心的语言模型建模指标上,论文比较了模型在单词级别和字符级别上不同数据集的表现,并且与RNN和(vanilla) Transformer都做了比较。实验证明,Transformer-XL在各个不同的数据集上均实现了目前的SoTA:在大型单词级别数据集WikiText-103上,Transformer-XL将困惑度从20.5降到18.3;在enwiki8数据集上,12层Transformer-XL的bpc达到了1.06,相同bpc的AI-Rfou的模型( https://arxiv.org/abs/1808.04444 )参数量却是6倍,24层Transformer-XL的bpc更是达到了0.99;在One Billion Word数据集上(仅具有短句的)和Penn Treebank数据集上(小型,仅有1M)也取得了SoTA的效果,前者的困惑度从23.7到21.8,后者的困惑度从55.3到54.5。表明了Transformer-XL在各个数据集下的不俗竞争力。

2. 两个创新点的优势

下图比较了不同上下文长度(即memory的长度)中包不包含循环机制、以及使不使用新位置编码方式的困惑度得分。可见,使用循环机制和相对位置编码的Transformer-XL明显优于其他的模型,并且能够有效利用长期依赖性,而且它能捕获超出RNN 80%的依赖性,和超出Transformer 450%的依赖性。

Transformer-XL的对比实验

3. 测试阶段的速度

Transformer-XL的推理速度也明显快于vanilla Transformer,尤其是对于较长的上下文。比如,在上下文长度为800时,Transformer-XL提速363倍;而当上下文长度增加到3800时,Transformer-XL提速1874倍!

六. 总结

1. 模型特点

在 AI-Rfou 等人提出的vanilla Transformer上做了两点创新:

引入循环机制(Recurrence Mechanism)
相对位置编码(Relative Positional Encoding)
2. 优点

在几种不同的数据集(大/小,字符级别/单词级别等)均实现了最先进的语言建模结果。
结合了深度学习的两个重要概念——循环机制和注意力机制,允许模型学习长期依赖性,且可能可以扩展到需要该能力的其他深度学习领域,例如音频分析(如每秒16k样本的语音数据)等。
在inference阶段非常快,比之前最先进的利用Transformer模型进行语言建模的方法快300~1800倍。
有详尽的源码!含TensorFlow和PyTorch版本的,并且有TensorFlow预训练好的模型及各个数据集上详尽的超参数设置。
3. 不足

尚未在具体的NLP任务如情感分析、QA等上应用。
没有给出与其他的基于Transformer的模型,如BERT等,对比有何优势。
在Github源码中提到,目前的sota结果是在TPU大集群上训练得出,对于我等渣机器党就只能玩玩base模式了。
传送门

论文:https://arxiv.org/pdf/1901.02860.pdf
代码:https://github.com/kimiyoung/transformer-xl
参考:https://www.lyrn.ai/2019/01/16/transformer-xl-sota-language-model

你可能感兴趣的:(深度学习)