- 【DICOM后处理】qt+vs 实现DICOM数据四视图显示
leafpipi
实战练习qtc++算法图像处理DICOM学习
目录1、DICOM四视图2、vtkImageViewer2实现二维平面图显示3、vtkVolume实现三维体数据显示4、实现界面图1、DICOM四视图DICOM四视图通常指同时显示医学影像的四个不同平面或视角,用于全面分析三维数据(如CT、MRI等)。标准四视图布局:横截面(Axial)水平切面,从上向下观察(类似传统CT/MRI的横断面切片)。显示解剖结构的横向分布,常用于定位病变。矢状面(Sa
- 医疗AI与融合数据库的整合:挑战、架构与未来展望(上)
Loving_enjoy
计算机学科论文创新点机器学习facebook课程设计经验分享
在医疗AI爆发式增长的今天,单一数据库已无法满足多模态医疗数据的处理需求。本文将揭秘医疗融合数据库的核心架构,通过真实代码示例展示如何破解医疗数据整合的世纪难题。###一、医疗数据的"四维挑战"####1.多模态数据洪流```python#典型患者数据组成patient_data={"时序数据":"ECG/EEG波形(1000Hz采样)","影像数据":"CT/MRI(单次扫描2GB+)","文本
- 介绍一款 MRI&CT 图像预处理强大工具--FSL
Tina姐吖
FSL是什么?全名是:FMRIB'sSoftwareLibraryFMRIB是英国牛津大学脑功能磁共振成像中心,FSL则是他们开发的一个软件库。由StephenSmith教授开发,发布于2000年适用于所有操作系统用于结构MRI、功能MRI(任务、静息)、扩散MRI的分析MRI,CT数据的预处理和分析MRI,CT数据的查看具体地,可以分为以下4类功能1结构MRI配准:linear(FLIRT)&n
- AI在垂直领域的深度应用:医疗、金融与自动驾驶的革新之路
AI在垂直领域的深度应用:医疗、金融与自动驾驶的革新之路一、医疗领域:AI驱动的精准诊疗与效率提升1.医学影像诊断AI算法通过深度学习技术,已实现对X光、CT、MRI等影像的快速分析,辅助医生检测癌症、骨折等疾病。例如,GoogleDeepMind的AI系统在乳腺癌筛查中,误检率比人类专家低9.4%;中国的推想医疗AI系统可在20秒内完成肺部CT扫描分析,为急诊救治争取黄金时间。2.药物研发传统药
- 支持向量机(SVM)在肝脏CT/MRI图像分类(肝癌检测)中的应用及实现
猿享天开
医学影像支持向量机机器学习人工智能算法
博主简介:CSDN博客专家、CSDN平台优质创作者,高级开发工程师,数学专业,10年以上C/C++,C#,Java等多种编程语言开发经验,拥有高级工程师证书;擅长C/C++、C#等开发语言,熟悉Java常用开发技术,能熟练应用常用数据库SQLserver,Oracle,mysql,postgresql等进行开发应用,熟悉DICOM医学影像及DICOM协议,业余时间自学JavaScript,Vue,
- 基于级联深度学习算法在双参数MRI中检测前列腺病变的评估| 文献速递-AI辅助的放射影像疾病诊断
有Li
人工智能深度学习算法
Title题目EvaluationofaCascadedDeepLearning–basedAlgorithmforProstateLesionDetectionatBiparametricMRI基于级联深度学习算法在双参数MRI中检测前列腺病变的评估Background背景MultiparametricMRI(mpMRI)improvesprostatecancer(PCa)detectionc
- SimpleITK——创建nrrd体素模型
bianguanyue
C#c#健康医疗算法
在介绍如何生成nrrd前,了解一下为什么医学影像上一般使用nrrd的体素模型?为什么医学影像上一般使用nrrd的体素模型?在医学影像领域,NRRD(NearlyRawRasterData)格式被广泛用于存储体素模型(如CT、MRI数据),主要基于以下技术优势:1.灵活的数据存储方式支持原始数据无损存储NRRD可直接存储未经压缩的体素数据(如16位整型、32位浮点),避免DICOM等格式
- GED-VIZ部署解决方案
yoyo_573
gitlab
项目https://github.com/bertelsmannstift/GED-VIZ最终结果如图:依赖要求:Dependencies一、Ruby1.9.3(MRI)withRubyGems.AlsoworkswithRuby2.1.(测试ruby2.4兼容性更好)二、MySQL5.1ornewer(测试过MYSQL5.7在迁移过程会有兼容性问题,建议MYSQL5.5)三、PhantomJSf
- Patch Position Embedding (PPE) 在医疗 AI 中的应用编程分析
Allen_Lyb
数智化教程(第二期)embedding人工智能机器学习健康医疗
一、PPE的核心原理与医疗场景适配性位置编码的本质需求在医疗影像(如CT、MRI、病理切片)中,Transformer需要将图像划分为若干Patch并作为序列输入。但如果不注入空间信息,模型难以区分同一病灶在不同坐标的语义差异。传统的绝对位置编码(如SinusoidalPE)对等距网格有效,却无法灵活适配病灶大小多变、图像分辨率不一的医学场景。PatchPositionEmbedding(PPE)
- 文献速递:深度学习乳腺癌诊断---使用深度学习改善乳腺癌诊断的MRI技术
有Li
深度学习人工智能
Title题目ImprovingbreastcancerdiagnosticswithdeeplearningforMRI使用深度学习改善乳腺癌诊断的MRI技术01文献速递介绍乳腺磁共振成像(MRI)是一种高度敏感的检测乳腺癌的方式,报道的敏感性超过80%。传统上,其在筛查中的使用被限制在高风险患者身上。新的证据支持在中等风险和普通风险女性中进行筛查MRI的作用4)。诊断MRI对于额外的指示也很有
- 基于ADMM的MRI-PET高质量图像重建算法
yt94832
算法java前端
基于ADMM的MRI-PET高质量图像重建算法ADMM_PET-MR-master/ADMM_PET-MR-master/.gitignore,412ADMM_PET-MR-master/ADMM_PET-MR-master/.goutputstream-16HUEY,0ADMM_PET-MR-master/ADMM_PET-MR-master/ADMM_matlab_test/admm_matl
- 全网最全医学图像数据汇总
概述⚠️重要声明:这些数据集仅适用于学术研究用途。目录CT数据集MRI数据集超声数据集内窥镜数据集病理数据集多模态数据集PET数据集OCT数据集皮肤镜数据集CT数据集名称任务类型部位格式数量下载链接MSDLung分割肺3D96下载MSDLiver分割肝脏3D201下载MSDSpleen分割脾脏3D61下载MSDHepaticVessels分割肝门静脉3D443下载MSDPancreas分割胰腺3D
- Levenberg-Marquardt算法详解和C++代码示例
点云SLAM
算法算法非线性最小二乘问题高斯-牛顿法和梯度下降法LM算法数值优化计算机视觉SLAM后端优化
Levenberg-Marquardt(LM)算法是非线性最小二乘问题中常用的一种优化算法,它融合了高斯-牛顿法和梯度下降法的优点,在数值计算与SLAM、图像配准、机器学习等领域中应用广泛。一、Levenberg-Marquardt算法基本原理1.1问题定义我们希望最小化一个非线性残差平方和目标函数:minx f(x)=12∑i=1mri(x)2=12∥r(x)∥2\min_{\mathbf{x
- 什么是梯度磁场
JZMSYYQ
其他磁场设备测试工具功能测试
梯度磁场是叠加在均匀主磁场(如MRI中的静磁场B₀)上的一种特殊磁场,其强度会沿着特定方向(如X、Y或Z轴)呈线性变化。这种磁场在磁共振成像和粒子控制等领域发挥着关键作用,主要用于实现空间位置的精确编码和区分。在磁共振成像中,梯度磁场通过三轴方向(Gx、Gy、Gz)的组合应用,分别完成频率编码、相位编码和层面选择功能,从而实现三维空间定位。通过调节层面选择梯度的强度,可以控制扫描层面的厚度,梯度越
- Ubuntu 安装 FSL 及多模态脑MRI的去颅骨处理(含 HD-BET 深度学习方法)
Joker 007
医学影像处理ubuntu深度学习linux
脑部医学图像处理的第一步通常是去颅骨(SkullStripping),也叫脑提取(BrainExtraction)。本文将介绍如何在Ubuntu系统中安装FSL,使用其经典工具BET进行T1、T2、PD模态的去颅骨操作,并补充介绍基于深度学习的更强大方法HD-BET。一、FSL安装与环境配置(Ubuntu)FSL(FMRIBSoftwareLibrary)是牛津大学开发的医学图像处理工具集,支持大
- 跨平台三维可视化与图形库.VTK图形库.
yuanpan
信息可视化数据可视化
1.科学数据可视化体绘制(VolumeRendering)用于医学影像(如CT、MRI)、气象数据(如云层、流体模拟)的三维渲染,支持透明度、光照和颜色映射。等值面提取(Iso-Surfacing)通过算法(如MarchingCubes)从标量数据中提取表面(如医学图像中的器官轮廓)。流场可视化显示向量场(如风场、流体动力学),支持流线(Streamlines)、粒子追踪(ParticleTrac
- 生物化学笔记:神经生物学概论 论文阅读 髓鞘作为能量储存 Widespread drastic reduction of brain myelin content upon prolonged e
FakeOccupational
力学+地球物理科学+化学笔记论文阅读
长期耐力运动会导致大脑髓鞘含量普遍大幅减少PAPERLINKWidespreaddrasticreductionofbrainmyelincontentuponprolongedenduranceexercise髓鞘作为能量储存Abstract最新研究表明,当葡萄糖供应不足时,髓鞘脂质可能充当神经胶质细胞的能量储备,这一假说尚未被充分证实。本研究利用磁共振成像(MRI)探究马拉松对髓鞘含量的影响。
- 联邦学习真香警告:跨机构医疗数据协作中的梯度投毒攻防
梦玄网络安全
golang爬虫算法python服务器
联邦学习(FederatedLearning,FL)作为医疗数据协作的核心技术,允许医院在不共享原始数据的前提下联合训练AI模型。然而,其分布式特性也使其成为梯度投毒攻击(GradientPoisoningAttack)的温床。本文将深度解析这一攻防战的技术细节与实战方案。一、为什么医疗领域需要联邦学习?1.1医疗数据协作的困境•数据孤岛:医院A有MRI影像,医院B有病理切片,但数据无法直接共享(
- MRI学习笔记
2401_87217652
人工智能算法
相关名词及含义一、MRI类磁共振成像缩写为MRI(全称:Magneticresonanceimage)核磁共振成像(英语:NuclearMagneticResonanceImaging,简称NMRI),又称自旋成像(英语:spinimaging),也称磁共振成像(MagneticResonanceImaging,简称MRI),是利用核磁共振(nuclearmagneticresonance,简称N
- 机器视觉:医疗领域的精准诊断助手》
人工智能专属驿站
计算机视觉
机器视觉:医疗领域的精准诊断助手》1.引言在医疗领域,机器视觉技术正成为医生们的得力助手,为精准诊断提供了强大的支持。2.机器视觉的优势医学影像分析:机器视觉技术可以辅助医生进行医学影像的诊断,如X光片、CT扫描和MRI图像等。通过对这些图像的分析,机器视觉系统能够快速识别病变部位,帮助医生更早地发现疾病,提高诊断的准确性和效率。手术辅助:在手术中,机器视觉系统能够实时监测手术器械和人体内部结构,
- 人工智能赋能医疗影像诊断:开启精准医疗新时代
Blossom.118
分布式系统与高性能计算领域人工智能动态规划交互健康医疗智慧城市算法数据结构
在当今数字化、智能化飞速发展的时代,人工智能(AI)技术正逐渐渗透到各个行业,其中医疗领域更是成为了AI技术大展身手的重要舞台,而医疗影像诊断作为医疗行业中的关键环节,正因AI的赋能而发生着深刻变革,为精准医疗的实现带来了前所未有的机遇。一、医疗影像诊断的现状与痛点医疗影像诊断主要包括X光、CT、MRI、超声等多种影像学检查手段,它们为医生提供了人体内部结构和功能的可视化信息,是疾病诊断、治疗方案
- 安宝特方案 | 医疗AR眼镜,重新定义远程会诊体验
安宝特AR
安宝特AR产品方案安宝特AR客户案例ar
【AR眼镜:重新定义远程会诊体验】在快速发展的医疗领域,安宝特医疗AR眼镜以其尖端技术和创新功能,引领远程会诊的未来,致力于为为医生和患者带来更高效、精准和无缝的医疗体验。探索安宝特医疗AR眼镜如何在医疗行业中引领新风潮,让远程医疗的未来变得触手可及!01实时沉浸式体验安宝特医疗AR眼镜配备高分辨率的显示技术,使医生能够在眼前实时查看患者的影像数据、病历记录和关键健康指标。无论是CT扫描、MRI还
- MRI基础模型BME-X
小小毛桃
图像处理
论文《AFoundationModelforEnhancingMagneticResonanceImagesandDownstreamSegmentation,RegistrationandDiagnosticTasks》深度解析背景与挑战磁共振成像(MRI)因其无创性和高软组织对比度,成为脑部研究的重要工具,但实际应用中面临多重挑战:运动伪影:头部运动、心跳等导致图像模糊或重影,尤其在幼儿(2-
- 多模态医学图像数据集
蕉蕉树上有香香
人工智能图像处理
多模态医学图像数据集多模态医学图像数据集是指包含不同模态(如CT、MRI、PET等)的医学图像的数据集,它们可以提供更多的信息和视角,有助于医学图像分析和诊断。MedMNIST:这是一个包含10个医学公开数据集的集合,共计包含45万张28*28的医学多模态图片数据,可用于解决医学图像分析相关问题。BraTS:这是一个用于脑肿瘤分割的数据集,包含多模态的MRI图像,如T1、T1c、T2和Flair,
- 什么是DICOM文件?——认识DICOM:医学影像与信息管理的标准化利器
猿享天开
DICOM医学影像专业知识精讲1024程序员节DICOMDICOM医学影像
目录引言什么是DICOM?DICOM的组成DICOM的功能DICOM的应用DICOM的种类DICOM的生成过程DICOM的发展总结引言在现代医学中,影像处理和管理是不可或缺的一环。从MRI、CT、X射线到超声波,医学影像为诊断和治疗提供了丰富的信息。而在医疗影像领域,DICOM(DigitalImagingandCommunicationsinMedicine,数字成像和通信)作为一种国际标准,扮
- NPU协同下的MoE专家库架构:医疗AI会诊负载均衡的革新
Allen_Lyb
医疗高效编程研发架构人工智能负载均衡健康医疗数据分析
一、医疗AI协同会诊的挑战与机遇1.1多模态数据融合的复杂性在当今医疗领域,数据呈现出爆炸式增长,且来源广泛、类型多样,涵盖了医学影像(如X光、CT、MRI等)、临床文本(病历、诊断报告等)、基因数据以及各种生理信号数据等。这些多模态数据蕴含着丰富的疾病信息,但也给医疗AI的诊断带来了巨大挑战。以医学影像数据为例,其包含了大量的图像细节和空间信息,对于识别病变部位和形态具有关键作用。然而,不同模态
- 向量数据库的适用场景与局限性分析
CoreFMEA软件
技术算法数据库向量数据库
一、核心适用场景1.多模态内容检索电商智能搜索:支持“以图搜图”“以文搜图”,例如用户上传一张碎花裙照片,系统可精准匹配相似款式商品,同时结合文本描述(如“雪纺材质”“夏季新款”)进行过滤,提升搜索效率。阿里云向量检索服务(VRS)在某电商平台实现亿级商品图片毫秒级检索,点击率提升35%。医疗影像分析:存储CT、MRI等医学影像的向量特征,支持病灶相似度匹配。例如,输入肺部结节影像,系统可快速检索
- 图像识别技术与应用课后总结(20)
一元钱面包
人工智能
图像分割概念图像分割是把图像中不同像素划分到不同类别,预测目标轮廓,属于细粒度分类。比如将图像里不同物体、背景等区分开来,就像把一幅画里的各个元素精准归类。应用场景人像抠图:能精准分离人物和背景,用于图片编辑、影视制作等,比如去除照片背景换背景。医学组织提取:在医学影像(如CT、MRI图像)中分离出不同组织,辅助疾病诊断、手术规划等。遥感图像分析:分析卫星或航空遥感图像时,区分土地、植被、建筑等不
- OpenGL 3D纹理
令狐掌门
C++OpenGL3d性能优化OpenGL3D
理论基础3D纹理(也称为体积纹理)是纹理映射的扩展,从2D平面扩展到3D空间。与2D纹理不同,3D纹理在三个维度上存储数据(宽度、高度和深度),允许在整个3D空间中采样,而不仅仅是在平面上。3D纹理的主要特性和用途:体积数据表示:用于表示完整的3D数据集,如医学扫描(CT、MRI)、气象数据等空间采样:允许在3D空间中的任意位置进行纹理采样层次细节:支持类似2D纹理的MipMap功能,但在三维空间
- MRI学习第一章-核磁共振物理基础(二)
看星河的兔子
学习MRI机器学习电子
核磁共振物理基础原子核系的静磁化强度磁化强度矢量的弛豫过程T1T_1T1T2T_2T2组织弛豫的决定因素Bloch方程NMR谱线特性原子核系的静磁化强度前面讨论单个原子核的核磁共振情形,实际上实验样品中含有大量的原子核。因此需要从微观转向宏观Bloch指出磁化强度矢量M(magneti-zationvector)~核系宏观特性。一般情况下,无外加磁场作用,核磁矩方向随机分布,M矢量和为0磁化强度矢
- jquery实现的jsonp掉java后台
知了ing
javajsonpjquery
什么是JSONP?
先说说JSONP是怎么产生的:
其实网上关于JSONP的讲解有很多,但却千篇一律,而且云里雾里,对于很多刚接触的人来讲理解起来有些困难,小可不才,试着用自己的方式来阐释一下这个问题,看看是否有帮助。
1、一个众所周知的问题,Ajax直接请求普通文件存在跨域无权限访问的问题,甭管你是静态页面、动态网页、web服务、WCF,只要是跨域请求,一律不准;
2、
- Struts2学习笔记
caoyong
struts2
SSH : Spring + Struts2 + Hibernate
三层架构(表示层,业务逻辑层,数据访问层) MVC模式 (Model View Controller)
分层原则:单向依赖,接口耦合
1、Struts2 = Struts + Webwork
2、搭建struts2开发环境
a>、到www.apac
- SpringMVC学习之后台往前台传值方法
满城风雨近重阳
springMVC
springMVC控制器往前台传值的方法有以下几种:
1.ModelAndView
通过往ModelAndView中存放viewName:目标地址和attribute参数来实现传参:
ModelAndView mv=new ModelAndView();
mv.setViewName="success
- WebService存在的必要性?
一炮送你回车库
webservice
做Java的经常在选择Webservice框架上徘徊很久,Axis Xfire Axis2 CXF ,他们只有一个功能,发布HTTP服务然后用XML做数据传输。
是的,他们就做了两个功能,发布一个http服务让客户端或者浏览器连接,接收xml参数并发送xml结果。
当在不同的平台间传输数据时,就需要一个都能解析的数据格式。
但是为什么要使用xml呢?不能使json或者其他通用数据
- js年份下拉框
3213213333332132
java web ee
<div id="divValue">test...</div>测试
//年份
<select id="year"></select>
<script type="text/javascript">
window.onload =
- 简单链式调用的实现技术
归来朝歌
方法调用链式反应编程思想
在编程中,我们可以经常遇到这样一种场景:一个实例不断调用它自身的方法,像一条链条一样进行调用
这样的调用你可能在Ajax中,在页面中添加标签:
$("<p>").append($("<span>").text(list[i].name)).appendTo("#result");
也可能在HQ
- JAVA调用.net 发布的webservice 接口
darkranger
webservice
/**
* @Title: callInvoke
* @Description: TODO(调用接口公共方法)
* @param @param url 地址
* @param @param method 方法
* @param @param pama 参数
* @param @return
* @param @throws BusinessException
- Javascript模糊查找 | 第一章 循环不能不重视。
aijuans
Way
最近受我的朋友委托用js+HTML做一个像手册一样的程序,里面要有可展开的大纲,模糊查找等功能。我这个人说实在的懒,本来是不愿意的,但想起了父亲以前教我要给朋友搞好关系,再加上这也可以巩固自己的js技术,于是就开始开发这个程序,没想到却出了点小问题,我做的查找只能绝对查找。具体的js代码如下:
function search(){
var arr=new Array("my
- 狼和羊,该怎么抉择
atongyeye
工作
狼和羊,该怎么抉择
在做一个链家的小项目,只有我和另外一个同事两个人负责,各负责一部分接口,我的接口写完,并全部测联调试通过。所以工作就剩下一下细枝末节的,工作就轻松很多。每天会帮另一个同事测试一些功能点,协助他完成一些业务型不强的工作。
今天早上到公司没多久,领导就在QQ上给我发信息,让我多协助同事测试,让我积极主动些,有点责任心等等,我听了这话,心里面立马凉半截,首先一个领导轻易说
- 读取android系统的联系人拨号
百合不是茶
androidsqlite数据库内容提供者系统服务的使用
联系人的姓名和号码是保存在不同的表中,不要一下子把号码查询来,我开始就是把姓名和电话同时查询出来的,导致系统非常的慢
关键代码:
1, 使用javabean操作存储读取到的数据
package com.example.bean;
/**
*
* @author Admini
- ORACLE自定义异常
bijian1013
数据库自定义异常
实例:
CREATE OR REPLACE PROCEDURE test_Exception
(
ParameterA IN varchar2,
ParameterB IN varchar2,
ErrorCode OUT varchar2 --返回值,错误编码
)
AS
/*以下是一些变量的定义*/
V1 NUMBER;
V2 nvarc
- 查看端号使用情况
征客丶
windows
一、查看端口
在windows命令行窗口下执行:
>netstat -aon|findstr "8080"
显示结果:
TCP 127.0.0.1:80 0.0.0.0:0 &
- 【Spark二十】运行Spark Streaming的NetworkWordCount实例
bit1129
wordcount
Spark Streaming简介
NetworkWordCount代码
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
- Struts2 与 SpringMVC的比较
BlueSkator
struts2spring mvc
1. 机制:spring mvc的入口是servlet,而struts2是filter,这样就导致了二者的机制不同。 2. 性能:spring会稍微比struts快。spring mvc是基于方法的设计,而sturts是基于类,每次发一次请求都会实例一个action,每个action都会被注入属性,而spring基于方法,粒度更细,但要小心把握像在servlet控制数据一样。spring
- Hibernate在更新时,是可以不用session的update方法的(转帖)
BreakingBad
Hibernateupdate
地址:http://blog.csdn.net/plpblue/article/details/9304459
public void synDevNameWithItil()
{Session session = null;Transaction tr = null;try{session = HibernateUtil.getSession();tr = session.beginTran
- 读《研磨设计模式》-代码笔记-观察者模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.List;
import java.util.Observable;
import java.util.Observer;
/**
* “观
- 重置MySQL密码
chenhbc
mysql重置密码忘记密码
如果你也像我这么健忘,把MySQL的密码搞忘记了,经过下面几个步骤就可以重置了(以Windows为例,Linux/Unix类似):
1、关闭MySQL服务
2、打开CMD,进入MySQL安装目录的bin目录下,以跳过权限检查的方式启动MySQL
mysqld --skip-grant-tables
3、新开一个CMD窗口,进入MySQL
mysql -uroot
 
- 再谈系统论,控制论和信息论
comsci
设计模式生物能源企业应用领域模型
再谈系统论,控制论和信息论
偶然看
- oracle moving window size与 AWR retention period关系
daizj
oracle
转自: http://tomszrp.itpub.net/post/11835/494147
晚上在做11gR1的一个awrrpt报告时,顺便想调整一下AWR snapshot的保留时间,结果遇到了ORA-13541这样的错误.下面是这个问题的发生和解决过程.
SQL> select * from v$version;
BANNER
-------------------
- Python版B树
dieslrae
python
话说以前的树都用java写的,最近发现python有点生疏了,于是用python写了个B树实现,B树在索引领域用得还是蛮多了,如果没记错mysql的默认索引好像就是B树...
首先是数据实体对象,很简单,只存放key,value
class Entity(object):
'''数据实体'''
def __init__(self,key,value)
- C语言冒泡排序
dcj3sjt126com
算法
代码示例:
# include <stdio.h>
//冒泡排序
void sort(int * a, int len)
{
int i, j, t;
for (i=0; i<len-1; i++)
{
for (j=0; j<len-1-i; j++)
{
if (a[j] > a[j+1]) // >表示升序
- 自定义导航栏样式
dcj3sjt126com
自定义
-(void)setupAppAppearance
{
[[UILabel appearance] setFont:[UIFont fontWithName:@"FZLTHK—GBK1-0" size:20]];
[UIButton appearance].titleLabel.font =[UIFont fontWithName:@"FZLTH
- 11.性能优化-优化-JVM参数总结
frank1234
jvm参数性能优化
1.堆
-Xms --初始堆大小
-Xmx --最大堆大小
-Xmn --新生代大小
-Xss --线程栈大小
-XX:PermSize --永久代初始大小
-XX:MaxPermSize --永久代最大值
-XX:SurvivorRatio --新生代和suvivor比例,默认为8
-XX:TargetSurvivorRatio --survivor可使用
- nginx日志分割 for linux
HarborChung
nginxlinux脚本
nginx日志分割 for linux 默认情况下,nginx是不分割访问日志的,久而久之,网站的日志文件将会越来越大,占用空间不说,如果有问题要查看网站的日志的话,庞大的文件也将很难打开,于是便有了下面的脚本 使用方法,先将以下脚本保存为 cutlog.sh,放在/root 目录下,然后给予此脚本执行的权限
复制代码代码如下:
chmo
- Spring4新特性——泛型限定式依赖注入
jinnianshilongnian
springspring4泛型式依赖注入
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- centOS安装GCC和G++
liuxihope
centosgcc
Centos支持yum安装,安装软件一般格式为yum install .......,注意安装时要先成为root用户。
按照这个思路,我想安装过程如下:
安装gcc:yum install gcc
安装g++: yum install g++
实际操作过程发现,只能有gcc安装成功,而g++安装失败,提示g++ command not found。上网查了一下,正确安装应该
- 第13章 Ajax进阶(上)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- How to determine BusinessObjects service pack and fix pack
blueoxygen
BO
http://bukhantsov.org/2011/08/how-to-determine-businessobjects-service-pack-and-fix-pack/
The table below is helpful. Reference
BOE XI 3.x
12.0.0.
y BOE XI 3.0 12.0.
x.
y BO
- Oracle里的自增字段设置
tomcat_oracle
oracle
大家都知道吧,这很坑,尤其是用惯了mysql里的自增字段设置,结果oracle里面没有的。oh,no 我用的是12c版本的,它有一个新特性,可以这样设置自增序列,在创建表是,把id设置为自增序列
create table t
(
id number generated by default as identity (start with 1 increment b
- Spring Security(01)——初体验
yang_winnie
springSecurity
Spring Security(01)——初体验
博客分类: spring Security
Spring Security入门安全认证
首先我们为Spring Security专门建立一个Spring的配置文件,该文件就专门用来作为Spring Security的配置