项目实战(八) - - BERT实现与Fine-tuning

项目实战(八) - - BERT实现与Fine-tuning

    • 1. BERT简介
    • 2. 两个语言模型任务:
        • 2.1 完形填空Masked Language Model
        • 2.2 Next Sentence Prediction
    • 3. 细节技巧
        • 3.1 LOSS计算
        • 3.2 激活函数GELU
    • 4. 核心代码
    • 5. Fine-tuning

1. BERT简介

BERT 全称为 Bidirectional Encoder Representation from Transformer,是 Google 以无监督的方式利用大量无标注文本训练的语言模型,其架构为 Transformer 中的 Encoder(BERT=Encoder of Transformer)

2. 两个语言模型任务:

2.1 完形填空Masked Language Model

随机替换掉句子中15%的token,按一定比例分别替换为其他词id,[MASK]id,不变;让模型预测和还原被遮盖掉或替换掉的部分,计算损失的时候,只计算被随机遮盖或替换的部分,其余部分不做损失

2.2 Next Sentence Prediction

拿到相邻两个句子作为上下文,token变为:[CLS]上一句话[SEP]下一句话[SEP],每拿到两个句子判断是否为上下文,正例与负例之比为1:1

3. 细节技巧

3.1 LOSS计算

  • LOSS=LOSS(任务1)+LOSS(任务2)

3.2 激活函数GELU

在激活中加入随机正则的思想,对于输入乘以一个0,1组成的mask,而该mask的生成则是依概率随机的依赖于输入,mask服从伯努利分布,输入一般服从正态分布,当输入减小时,有一个更大概率被dropout掉,即使得激活变换随机依赖于输入
论文中近似计算公式设置为:
在这里插入图片描述

def gelu(x):
    return 0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))

4. 核心代码

BERT模型主要包含三个核心部分

  • Embedding层
class BertEmbeddings(nn.Module):
    """Construct the embeddings from word, position and token_type embeddings.
    """

    def __init__(self, config):
        super().__init__()
        self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
        self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
        self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)

        # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
        # any TensorFlow checkpoint file
        self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

        # position_ids (1, len position emb) is contiguous in memory and exported when serialized
        self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)))

    def forward(self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None):
        if input_ids is not None:
            input_shape = input_ids.size()
        else:
            input_shape = inputs_embeds.size()[:-1]

        seq_length = input_shape[1]

        if position_ids is None:
            position_ids = self.position_ids[:, :seq_length]

        if token_type_ids is None:
            token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)

        if inputs_embeds is None:
            inputs_embeds = self.word_embeddings(input_ids)
        position_embeddings = self.position_embeddings(position_ids)
        token_type_embeddings = self.token_type_embeddings(token_type_ids)

        embeddings = inputs_embeds + position_embeddings + token_type_embeddings
        embeddings = self.LayerNorm(embeddings)
        embeddings = self.dropout(embeddings)
        return embeddings
  • Self Attention层
class BertSelfAttention(nn.Module):
    def __init__(self, config):
        super().__init__()
        if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
            raise ValueError(
                "The hidden size (%d) is not a multiple of the number of attention "
                "heads (%d)" % (config.hidden_size, config.num_attention_heads)
            )

        self.num_attention_heads = config.num_attention_heads
        self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
        self.all_head_size = self.num_attention_heads * self.attention_head_size

        self.query = nn.Linear(config.hidden_size, self.all_head_size)
        self.key = nn.Linear(config.hidden_size, self.all_head_size)
        self.value = nn.Linear(config.hidden_size, self.all_head_size)

        self.dropout = nn.Dropout(config.attention_probs_dropout_prob)

    def transpose_for_scores(self, x):
        new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
        x = x.view(*new_x_shape)
        return x.permute(0, 2, 1, 3)

    def forward(
        self,
        hidden_states,
        attention_mask=None,
        head_mask=None,
        encoder_hidden_states=None,
        encoder_attention_mask=None,
        output_attentions=False,
    ):
        mixed_query_layer = self.query(hidden_states)

        # If this is instantiated as a cross-attention module, the keys
        # and values come from an encoder; the attention mask needs to be
        # such that the encoder's padding tokens are not attended to.
        if encoder_hidden_states is not None:
            mixed_key_layer = self.key(encoder_hidden_states)
            mixed_value_layer = self.value(encoder_hidden_states)
            attention_mask = encoder_attention_mask
        else:
            mixed_key_layer = self.key(hidden_states)
            mixed_value_layer = self.value(hidden_states)

        query_layer = self.transpose_for_scores(mixed_query_layer)
        key_layer = self.transpose_for_scores(mixed_key_layer)
        value_layer = self.transpose_for_scores(mixed_value_layer)

        # Take the dot product between "query" and "key" to get the raw attention scores.
        attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
        attention_scores = attention_scores / math.sqrt(self.attention_head_size)
        if attention_mask is not None:
            # Apply the attention mask is (precomputed for all layers in BertModel forward() function)
            attention_scores = attention_scores + attention_mask

        # Normalize the attention scores to probabilities.
        attention_probs = nn.Softmax(dim=-1)(attention_scores)

        # This is actually dropping out entire tokens to attend to, which might
        # seem a bit unusual, but is taken from the original Transformer paper.
        attention_probs = self.dropout(attention_probs)

        # Mask heads if we want to
        if head_mask is not None:
            attention_probs = attention_probs * head_mask

        context_layer = torch.matmul(attention_probs, value_layer)

        context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
        new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
        context_layer = context_layer.view(*new_context_layer_shape)

        outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
        return outputs
  • Pooler层
class BertPooler(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
        self.activation = nn.Tanh()

    def forward(self, hidden_states):
        # We "pool" the model by simply taking the hidden state corresponding
        # to the first token.
        first_token_tensor = hidden_states[:, 0]
        pooled_output = self.dense(first_token_tensor)
        pooled_output = self.activation(pooled_output)
        return pooled_output

5. Fine-tuning

CoLA
单句的二分类问题, 判断一个英文句子在语法上是不是可接受的.
SST-2
电影情感分类(二分类问题)
MRPC
微软研究释义语料库,判断两个文本的信息是不是等价的
STS-B
语义文本相似度数据集.样本为文本对,判断两个文本语义信息的相似度,分数为1-5.
QQP
文本匹配. 判断两个问题的语义是否等价的(二分类问题).

MNLI-m、MNLI-mm、RTE、WNLI
句子关系识别

多类型文本蕴含关系识别. 文本间的推理关系,又称为文本蕴含关系.样本都是文本对第一个文本M作为前提, 如果能够从文本M推理出第二个文本N,即可说M蕴含N, M->N.两个文本关系一共有3种: entailment(蕴含), contradiction(矛盾),neutral(中立)

QNLI
用于判断文本是否包含问题的答案,类似与做阅读理解定位问题所在的段落(二分类问题).
AX
QA型图像数据库

你可能感兴趣的:(项目实战,深度学习,自然语言处理,神经网络,pytorch,数据挖掘)