线程池原理ThreadPoolExecutor

文章目录

  • 前言
  • 一、ThreadPoolExecutor
    • 1. 主要属性
    • 2. 构造方法
    • 3. Worker
    • 4. 主要方法
      • execute(Runnable task)
      • addWorker(firstTask, core)
      • runWorker(Worker w)
  • 总结


前言

上一篇已经介绍完了ThreadPoolExecutor结构体系,也对FutureTask做了详细的分析,这次将对ThreadPoolExecutor源码进行详细分析,作为线程池的核心实现类,面试必问的考察点之一,学习多线程无论如何都要把这个类给掌握了。


一、ThreadPoolExecutor

1. 主要属性

	// 一个int存两个数:线程池工作线程数(后29位)+线程池状态(前3位)。
	private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0));
    private static final int COUNT_BITS = Integer.SIZE - 3;
    private static final int CAPACITY   = (1 << COUNT_BITS) - 1;

    // 线程池的状态
    private static final int RUNNING    = -1 << COUNT_BITS; // 111
    private static final int SHUTDOWN   =  0 << COUNT_BITS; // 000
    private static final int STOP       =  1 << COUNT_BITS; // 001
    private static final int TIDYING    =  2 << COUNT_BITS; // 010
    private static final int TERMINATED =  3 << COUNT_BITS; // 011
    // 存放任务的阻塞队列
    // 作用:缓冲、任务提交和执行进行解耦
	private final BlockingQueue<Runnable> workQueue;
	// 存放线程池中所有的工作线程
	private final HashSet<Worker> workers = new HashSet<Worker>();
	// 线程池达到的最大线程数,用来记录的,小于等于maximumPoolSize
	private int largestPoolSize;
	// 完成任务数量
	private long completedTaskCount;
	// 创建工作线程的工厂
	private volatile ThreadFactory threadFactory;
	// 拒绝任务处理器(提供4种处理器,也可以自己实现,默认抛异常)
	private volatile RejectedExecutionHandler handler;
	// 空闲线程等待工作的超时时间
	private volatile long keepAliveTime;
	// 如果为false(默认),则即使处于空闲状态,核心线程也保持活动状态。
	// 如果为true,则核心线程使用keepAliveTime来超时等待工作
	private volatile boolean allowCoreThreadTimeOut;
	// 核心线程数
	private volatile int corePoolSize;
	// 线程池最大线程数,这个需要我们设置的
	// 作用:为了增强线程池的弹性工作。
	private volatile int maximumPoolSize;
	// 获取线程池状态
 	private static int runStateOf(int c)     {
      return c & ~CAPACITY; }
 	// 获取工作线程数
    private static int workerCountOf(int c)  {
      return c & CAPACITY; }
   	// 两个数组合成一个数
    private static int ctlOf(int rs, int wc) {
      return rs | wc; }
	

2. 构造方法

ThreadPoolExecutor有4个构造方法,但最终都是调用一个构造方法,所以这里只介绍这一个构造方法。
corePoolSize:核心线程数大小
maximumPoolSize:最大线程数大小
keepAliveTime:空闲存活时间
unit:时间单位
workQueue:存放任务的阻塞队列
threadFactory:创建工作线程的工厂
handler:拒绝策略处理器

public ThreadPoolExecutor(int corePoolSize,
                              int maximumPoolSize,
                              long keepAliveTime,
                              TimeUnit unit,
                              BlockingQueue<Runnable> workQueue,
                              ThreadFactory threadFactory,
                              RejectedExecutionHandler handler) {
     
        if (corePoolSize < 0 ||
            maximumPoolSize <= 0 ||
            maximumPoolSize < corePoolSize ||
            keepAliveTime < 0)
            throw new IllegalArgumentException();
        if (workQueue == null || threadFactory == null || handler == null)
            throw new NullPointerException();
        this.corePoolSize = corePoolSize;
        this.maximumPoolSize = maximumPoolSize;
        this.workQueue = workQueue;
        this.keepAliveTime = unit.toNanos(keepAliveTime);
        this.threadFactory = threadFactory;
        this.handler = handler;
    }

3. Worker

前面看到属性中有Worker中,这个类继承了AQS,简单重写了独占模式对应的方法,实现了Runnable接口。Worker封装了工作线程,也封装了任务,因为Worker实现了Runnable接口,则可以把自己交给线程去执行。

private final class Worker extends AbstractQueuedSynchronizer implements Runnable
{
     
    /** 工作线程*/
    final Thread thread;
    /** 需要完成的初始化任务,可能为null */
    Runnable firstTask;
    /** 当前线程完成任务计数器 */
    volatile long completedTasks;
	
    Worker(Runnable firstTask) {
     
        setState(-1); // runWorker之前禁止中断
        this.firstTask = firstTask;
        this.thread = getThreadFactory().newThread(this); // 创建一个新线程,该线程会执行this.run方法。
    }

    public void run() {
     
        runWorker(this);
    }

    protected boolean isHeldExclusively() {
     
        return getState() != 0;
    }

    protected boolean tryAcquire(int unused) {
     
        if (compareAndSetState(0, 1)) {
     
            setExclusiveOwnerThread(Thread.currentThread());
            return true;
        }
        return false;
    }

    protected boolean tryRelease(int unused) {
     
        setExclusiveOwnerThread(null);
        setState(0);
        return true;
    }

    public void lock()        {
      acquire(1); }
    public boolean tryLock()  {
      return tryAcquire(1); }
    public void unlock()      {
      release(1); }
    public boolean isLocked() {
      return isHeldExclusively(); }

    void interruptIfStarted() {
     
        Thread t;
        if (getState() >= 0 && (t = thread) != null && !t.isInterrupted()) {
     
            try {
     
                t.interrupt();
            } catch (SecurityException ignore) {
     
            }
        }
    }
}

4. 主要方法

execute(Runnable task)

执行大致逻辑:

  1. 如果当前线程池中线程数小于核心线程数corePoolSize,则创建一个新的线程处理该任务。
  2. 如果大于等于核心线程数,则直接把该任务加入阻塞队列中。
  3. 如果该任务无法加入到阻塞队列中(可能队列中已经满了)排队,则新建线程处理该任务。
  4. 如果新建线程失败(已经达到最大线程数maximumPoolSize),则使用拒绝策略拒绝该任务。
    执行逻辑如下图所示:
    线程池原理ThreadPoolExecutor_第1张图片
public void execute(Runnable command) {
     
        if (command == null)
            throw new NullPointerException();
        int c = ctl.get();
        if (workerCountOf(c) < corePoolSize) {
     
            if (addWorker(command, true)) // 将command作为第一个任务开启一个核心线程处理
                return;
            c = ctl.get();
        }
        if (isRunning(c) && workQueue.offer(command)) {
      // 加入阻塞队列中
            int recheck = ctl.get();// double-check
            if (! isRunning(recheck) && remove(command))
                reject(command);
            else if (workerCountOf(recheck) == 0)// 如果没有工作线程了新建一个
                addWorker(null, false); // 只是单纯创建一个普通线程
        }
        else if (!addWorker(command, false)) // 将command作为第一个任务开启一个普通线程处理
            reject(command);
    }

addWorker(firstTask, core)

添加工作线程,并执行任务firstTask。
firstTask:第一个任务
core:是否为核心线程

private boolean addWorker(Runnable firstTask, boolean core) {
     
    retry:
    for (;;) {
      // 将线程数量+1
        int c = ctl.get();
        int rs = runStateOf(c);

        // 检查线程池的状态
        if (rs >= SHUTDOWN &&
            ! (rs == SHUTDOWN &&
               firstTask == null &&
               ! workQueue.isEmpty()))
            return false;

        for (;;) {
     
            int wc = workerCountOf(c);
            if (wc >= CAPACITY ||
                wc >= (core ? corePoolSize : maximumPoolSize))
                return false;
            if (compareAndIncrementWorkerCount(c)) // 只有这里为true才会退出外层for循环
                break retry;
            c = ctl.get();  // Re-read ctl
            if (runStateOf(c) != rs)
                continue retry;
            // else CAS failed due to workerCount change; retry inner loop
        }
    }

    boolean workerStarted = false;
    boolean workerAdded = false;
    Worker w = null;
    try {
     
        w = new Worker(firstTask); // 创建一个新线程
        final Thread t = w.thread;
        if (t != null) {
     
            final ReentrantLock mainLock = this.mainLock;
            mainLock.lock();
            try {
     
                // Recheck while holding lock.
                // Back out on ThreadFactory failure or if
                // shut down before lock acquired.
                int rs = runStateOf(ctl.get());

                if (rs < SHUTDOWN ||
                    (rs == SHUTDOWN && firstTask == null)) {
     
                    if (t.isAlive()) // precheck that t is startable
                        throw new IllegalThreadStateException();
                    workers.add(w); // 将w添加到集合中
                    int s = workers.size();
                    if (s > largestPoolSize)
                        largestPoolSize = s;
                    workerAdded = true;
                }
            } finally {
     
                mainLock.unlock();
            }
            if (workerAdded) {
     
                t.start(); // 添加成功后就执行任务,调用t.start方法为什么后面会执行worker.run方法呢?答案就在创建t的时候,可以回过去看看
                workerStarted = true;
            }
        }
    } finally {
     
        if (! workerStarted)
            addWorkerFailed(w);
    }
    return workerStarted;
}

runWorker(Worker w)

执行提交给线程池的任务,如果当前worker没有任务,则去队列中取任务执行。如果任务都执行完了,则处理worker退出,即线程数量减1,把当前worker工作的任务数汇总,然后从worker集合中删除。

final void runWorker(Worker w) {
     
    Thread wt = Thread.currentThread();
    Runnable task = w.firstTask;
    w.firstTask = null;
    w.unlock(); // allow interrupts
    boolean completedAbruptly = true;
    try {
     
        while (task != null || (task = getTask()) != null) {
     
            w.lock();
            // If pool is stopping, ensure thread is interrupted;
            // if not, ensure thread is not interrupted.  This
            // requires a recheck in second case to deal with
            // shutdownNow race while clearing interrupt
            if ((runStateAtLeast(ctl.get(), STOP) ||
                 (Thread.interrupted() &&
                  runStateAtLeast(ctl.get(), STOP))) &&
                !wt.isInterrupted())
                wt.interrupt();
            try {
     
                beforeExecute(wt, task);
                Throwable thrown = null;
                try {
     
                    task.run();
                } catch (RuntimeException x) {
     
                    thrown = x; throw x;
                } catch (Error x) {
     
                    thrown = x; throw x;
                } catch (Throwable x) {
     
                    thrown = x; throw new Error(x);
                } finally {
     
                    afterExecute(task, thrown);
                }
            } finally {
     
                task = null;
                w.completedTasks++;
                w.unlock();
            }
        }
        completedAbruptly = false;
    } finally {
     
        processWorkerExit(w, completedAbruptly);// 处理worker退出
    }
}

getTask()
从等待队列中获取任务,如果是核心线程那就一直等待任务直到获取成功,如果是非核心线程则等待对应时间,如果还没有获取到任务则将worker数量减1并返回null。

private Runnable getTask() {
     
    boolean timedOut = false; // Did the last poll() time out?

    for (;;) {
     
        int c = ctl.get();
        int rs = runStateOf(c);

        // Check if queue empty only if necessary.
        if (rs >= SHUTDOWN && (rs >= STOP || workQueue.isEmpty())) {
     
            decrementWorkerCount();
            return null;
        }

        int wc = workerCountOf(c);

        // Are workers subject to culling?
        boolean timed = allowCoreThreadTimeOut || wc > corePoolSize;

        if ((wc > maximumPoolSize || (timed && timedOut))
            && (wc > 1 || workQueue.isEmpty())) {
     
            if (compareAndDecrementWorkerCount(c))
                return null;
            continue;
        }

        try {
     
            Runnable r = timed ?
                workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) :
                workQueue.take();
            if (r != null)
                return r;
            timedOut = true;
        } catch (InterruptedException retry) {
     
            timedOut = false;
        }
    }
}

processWorkerExit(Worker w, boolean completedAbruptly)
处理worker的退出,结算该worker处理的任务数量进行汇总,然后从worker集合中移除。对于worker数量采取少补策略。

private void processWorkerExit(Worker w, boolean completedAbruptly) {
     
    if (completedAbruptly) // If abrupt, then workerCount wasn't adjusted
        decrementWorkerCount();

    final ReentrantLock mainLock = this.mainLock;
    mainLock.lock();
    try {
     
        completedTaskCount += w.completedTasks;
        workers.remove(w);
    } finally {
     
        mainLock.unlock();
    }

    tryTerminate();

    int c = ctl.get();
    if (runStateLessThan(c, STOP)) {
     
        if (!completedAbruptly) {
     
            int min = allowCoreThreadTimeOut ? 0 : corePoolSize;
            if (min == 0 && ! workQueue.isEmpty())
                min = 1;
            if (workerCountOf(c) >= min)
                return; // replacement not needed
        }
        addWorker(null, false);
    }
}

总结

线程池实现了线程的复用和管理,引入阻塞队列+worker将任务的提交和执行进行解耦,通过核心线程数和最大线程数让线程池更富有弹性,对于负荷达到上限引入拒绝机制并且支持用户扩展。ThreadFactory可以让用户创建线程。理解了这些重要的参数就能更合理的使用线程池。

你可能感兴趣的:(JDK源码系列,java,多线程,并发编程)