task03

Datawhale 零基础入门CV赛事-Task3 字符识别模型

在前面的章节,我们讲解了赛题的背景知识和赛题数据的读取。本章开始构建一个字符识别模型,基于对赛题理解本章将构建一个定长多字符分类模型。

3 字符识别模型

本章将会讲解卷积神经网络(Convolutional Neural Network, CNN)的常见层,并从头搭建一个字符识别模型。

3.1 学习目标

  • 学习CNN基础和原理
  • 使用Pytorch框架构建CNN模型,并完成训练

3.2 CNN介绍

卷积神经网络(简称CNN)是一类特殊的人工神经网络,是深度学习中重要的一个分支。CNN在很多领域都表现优异,精度和速度比传统计算学习算法高很多。特别是在计算机视觉领域,CNN是解决图像分类、图像检索、物体检测和语义分割的主流模型。

CNN每一层由众多的卷积核组成,每个卷积核对输入的像素进行卷积操作,得到下一次的输入。随着网络层的增加卷积核会逐渐扩大感受野,并缩减图像的尺寸。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-jFWh8J9E-1590505677943)(IMG/Task03/卷积.png)]

CNN是一种层次模型,输入的是原始的像素数据。CNN通过卷积(convolution)、池化(pooling)、非线性激活函数(non-linear activation function)和全连接层(fully connected layer)构成。

如下图所示为LeNet网络结构,是非常经典的字符识别模型。两个卷积层,两个池化层,两个全连接层组成。卷积核都是5×5,stride=1,池化层使用最大池化。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-IjoIscCJ-1590505677946)(IMG/Task03/Le_CNN.png)]

通过多次卷积和池化,CNN的最后一层将输入的图像像素映射为具体的输出。如在分类任务中会转换为不同类别的概率输出,然后计算真实标签与CNN模型的预测结果的差异,并通过反向传播更新每层的参数,并在更新完成后再次前向传播,如此反复直到训练完成 。

与传统机器学习模型相比,CNN具有一种端到端(End to End)的思路。在CNN训练的过程中是直接从图像像素到最终的输出,并不涉及到具体的特征提取和构建模型的过程,也不需要人工的参与。

3.3 CNN发展

随着网络结构的发展,研究人员最初发现网络模型结构越深、网络参数越多模型的精度更优。比较典型的是AlexNet、VGG、InceptionV3和ResNet的发展脉络。
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-zgrQkOVJ-1590505677950)(IMG/Task03/网络发展.png)]

  • LeNet-5(1998)

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-6DA5DAFF-1590505677954)(IMG/Task03/Le_net.png)]

  • AlexNet(2012)

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-YdEe7rU6-1590505677958)(IMG/Task03/Alex-net.png)]

  • VGG-16(2014)

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-P97gk6XK-1590505677960)(IMG/Task03/VGG.png)]

  • Inception-v1 (2014)

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-BdUh1X3M-1590505677962)(IMG/Task03/Incep-net.png)]

  • ResNet-50 (2015)

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-ggYPnPum-1590505677963)(IMG/Task03/Resnet50.png)]

3.4 Pytorch构建CNN模型

在上一章节我们讲解了如何使用Pytorch来读取赛题数据集,本节我们使用本章学习到的知识构件一个简单的CNN模型,完成字符识别功能。
在Pytorch中构建CNN模型非常简单,只需要定义好模型的参数和正向传播即可,Pytorch会根据正向传播自动计算反向传播。

在本章我们会构建一个非常简单的CNN,然后进行训练。这个CNN模型包括两个卷积层,最后并联6个全连接层进行分类。

import torch
torch.manual_seed(0)
torch.backends.cudnn.deterministic = False
torch.backends.cudnn.benchmark = True

import torchvision.models as models
import torchvision.transforms as transforms
import torchvision.datasets as datasets
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.autograd import Variable
from torch.utils.data.dataset import Dataset

# 定义模型
class SVHN_Model1(nn.Module):
    def __init__(self):
        super(SVHN_Model1, self).__init__()
        # CNN提取特征模块
        self.cnn = nn.Sequential(
            nn.Conv2d(3, 16, kernel_size=(3, 3), stride=(2, 2)),
            nn.ReLU(),  
            nn.MaxPool2d(2),
            nn.Conv2d(16, 32, kernel_size=(3, 3), stride=(2, 2)),
            nn.ReLU(), 
            nn.MaxPool2d(2),
        )
        # 
        self.fc1 = nn.Linear(32*3*7, 11)
        self.fc2 = nn.Linear(32*3*7, 11)
        self.fc3 = nn.Linear(32*3*7, 11)
        self.fc4 = nn.Linear(32*3*7, 11)
        self.fc5 = nn.Linear(32*3*7, 11)
        self.fc6 = nn.Linear(32*3*7, 11)
    
    def forward(self, img):        
        feat = self.cnn(img)
        feat = feat.view(feat.shape[0], -1)
        c1 = self.fc1(feat)
        c2 = self.fc2(feat)
        c3 = self.fc3(feat)
        c4 = self.fc4(feat)
        c5 = self.fc5(feat)
        c6 = self.fc6(feat)
        return c1, c2, c3, c4, c5, c6
    
model = SVHN_Model1()

接下来是训练代码:

# 损失函数
criterion = nn.CrossEntropyLoss()
# 优化器
optimizer = torch.optim.Adam(model.parameters(), 0.005)

loss_plot, c0_plot = [], []
# 迭代10个Epoch
for epoch in range(10):
    for data in train_loader:
        c0, c1, c2, c3, c4, c5 = model(data[0])
        loss = criterion(c0, data[1][:, 0]) + \
                criterion(c1, data[1][:, 1]) + \
                criterion(c2, data[1][:, 2]) + \
                criterion(c3, data[1][:, 3]) + \
                criterion(c4, data[1][:, 4]) + \
                criterion(c5, data[1][:, 5])
        loss /= 6
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        
        loss_plot.append(loss.item())
        c0_plot.append((c0.argmax(1) == data[1][:, 0]).sum().item()*1.0 / c0.shape[0])
        
    print(epoch)

在训练完成后我们可以将训练过程中的损失和准确率进行绘制,如下图所示。从图中可以看出模型的损失在迭代过程中逐渐减小,字符预测的准确率逐渐升高。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-F8bEmKfx-1590505677965)(IMG/Task03/loss.png)]

当然为了追求精度,也可以使用在ImageNet数据集上的预训练模型,具体方法如下:

class SVHN_Model2(nn.Module):
    def __init__(self):
        super(SVHN_Model1, self).__init__()
                
        model_conv = models.resnet18(pretrained=True)
        model_conv.avgpool = nn.AdaptiveAvgPool2d(1)
        model_conv = nn.Sequential(*list(model_conv.children())[:-1])
        self.cnn = model_conv
        
        self.fc1 = nn.Linear(512, 11)
        self.fc2 = nn.Linear(512, 11)
        self.fc3 = nn.Linear(512, 11)
        self.fc4 = nn.Linear(512, 11)
        self.fc5 = nn.Linear(512, 11)
    
    def forward(self, img):        
        feat = self.cnn(img)
        # print(feat.shape)
        feat = feat.view(feat.shape[0], -1)
        c1 = self.fc1(feat)
        c2 = self.fc2(feat)
        c3 = self.fc3(feat)
        c4 = self.fc4(feat)
        c5 = self.fc5(feat)
        return c1, c2, c3, c4, c5

3.5 本章小节

在本章中我们介绍了CNN以及CNN的发展,并使用Pytorch构建构建了一个简易的CNN模型来完成字符分类任务。

你可能感兴趣的:(task03)