opencv 直方图反向投影

       直方图反向投影式通过给定的直方图信息,在图像找到相应的像素分布区域,opencv提供两种算法,一个是基于像素的,一个是基于块的。

使用方法不写了,可以参考一下几个网站:

直方图反向投影参考1

直方图参考2

 

测试例子1:灰度直方图反向投影

灰度直方图反向投影
IplImage * image= cvLoadImage("22.jpg");  
IplImage * image2= cvLoadImage("2.jpg");  
int hist_size=256;  
float range[] = {0,255};  
float* ranges[]={range};  

IplImage* gray_plane = cvCreateImage(cvGetSize(image),8,1);  
cvCvtColor(image,gray_plane,CV_BGR2GRAY);  
CvHistogram* gray_hist = cvCreateHist(1,&hist_size,CV_HIST_ARRAY,ranges,1);  
cvCalcHist(&gray_plane,gray_hist,0,0);  
//cvNormalizeHist(gray_hist,1.0);  

IplImage* gray_plane2 = cvCreateImage(cvGetSize(image2),8,1);  
cvCvtColor(image2,gray_plane2,CV_BGR2GRAY);  
//CvHistogram* gray_hist2 = cvCreateHist(1,&hist_size,CV_HIST_ARRAY,ranges,1);  
//cvCalcHist(&gray_plane2,gray_hist2,0,0);  
//cvNormalizeHist(gray_hist2,1.0);  
IplImage* dst = cvCreateImage(cvGetSize(gray_plane2),IPL_DEPTH_8U,1);  

cvCalcBackProject(&gray_plane2, dst ,gray_hist);
cvEqualizeHist(dst,dst);
//产生的图像太暗,做了一些直方图均衡

cvNamedWindow( "dst");  
cvShowImage("dst",dst);  
cvNamedWindow( "src");  
cvShowImage( "src", image2 );  
cvNamedWindow( "templ");  
cvShowImage( "templ", image );  
cvWaitKey();

效果图:

 opencv 直方图反向投影_第1张图片
第一个图为源图像,中间的那个小图像是产生用于反向投影的直方图的图像,最后的用直方图均衡化后的结果图像,可以看到,苹果的像素位置几被找到了。

 

测试例子2:彩色直方图反向投影测试

彩色图像直方图反向投影
IplImage*src= cvLoadImage("myhand2.jpg", 1);  
IplImage*templ=cvLoadImage("myhand3.jpg",1);

cvNamedWindow( "Source" );  
cvShowImage( "Source", src );  


IplImage* h_plane2 = cvCreateImage( cvGetSize(src), 8, 1 );      
IplImage* s_plane2 = cvCreateImage( cvGetSize(src), 8, 1 );    
IplImage* v_plane2 = cvCreateImage( cvGetSize(src), 8, 1); 
IplImage* planes2[] = { h_plane2, s_plane2,v_plane2 };

IplImage* hsv2 = cvCreateImage( cvGetSize(src), 8, 3 );
cvCvtColor( src, hsv2, CV_BGR2HSV );    
cvSplit( hsv2, h_plane2, s_plane2, v_plane2, 0 );
printf("h%d",h_plane2->widthStep);
printf("s%d",h_plane2->widthStep);
printf("v%d",h_plane2->widthStep);

IplImage* h_plane = cvCreateImage( cvGetSize(templ), 8, 1 );      
IplImage* s_plane = cvCreateImage( cvGetSize(templ), 8, 1 );    
IplImage* v_plane = cvCreateImage( cvGetSize(templ), 8, 1);    
IplImage* planes[] = { h_plane, s_plane,v_plane };
IplImage* hsv = cvCreateImage( cvGetSize(templ), 8, 3 );  
cvCvtColor( templ, hsv, CV_BGR2HSV );    
cvSplit( hsv, h_plane, s_plane, v_plane, 0 );
printf("h%d\n",h_plane->widthStep);
printf("s%d\n",s_plane->widthStep);
printf("v%d\n",v_plane->widthStep);

int h_bins = 16, s_bins = 16,v_bins=16;
int hist_size[] = {h_bins, s_bins,v_bins};
float h_ranges[] = {0,255};
float s_ranges[] = {0,255};
float v_ranges[] = {0,255};
float* ranges[] = { h_ranges, s_ranges,v_ranges};
CvHistogram* hist;
hist = cvCreateHist( 3, hist_size, CV_HIST_ARRAY, ranges, 1 ); 
cvCalcHist( planes, hist, 0, 0 );
//1.double a=1.f;
//2.cvNormalizeHist(hist,a);
//templ's hist is just calculate

IplImage*back_project=cvCreateImage(cvGetSize(src),8,1);//!!归一,把改成,就弹出对话框,说planes的steps不是一致的!

cvZero(back_project);                                  //但是我去掉归一,改成就可以显示

//NOW we begin calculate back project

cvCalcBackProject(planes2,back_project,hist);


cvNamedWindow( "back_project" );  
cvShowImage( "back_project", back_project );  

cvWaitKey(0);

测试结果:

 opencv 直方图反向投影_第2张图片

手的肤色位置基本找到了,但是有一个问题,在做直方图反向的时候,直方图分级是16等分,并不是256等分,下图是32等分和8等分的图像效果:

opencv 直方图反向投影_第3张图片      32等分 opencv 直方图反向投影_第4张图片 8等分

程序里面使用了SHV分量,也算是肤色检测的一个实例,里面的颜色区分很明显,所有采用大一点的区域统计,能更好的找到肤色的位置,如果采用很细的颜色区分,光照的影响也会考虑进去了。

测试例子3:基于块的直方图投影

这种方法速度很慢,模版图像别弄的太大了。

基于块的图像直方图反向投影
IplImage*src= cvLoadImage("2.jpg", 1);  
IplImage*templ=cvLoadImage("22.jpg",1);

cvNamedWindow( "Source" );  
cvShowImage( "Source", src );  

IplImage* h_plane2 = cvCreateImage( cvGetSize(src), 8, 1 );      
IplImage* s_plane2 = cvCreateImage( cvGetSize(src), 8, 1 );    
IplImage* v_plane2 = cvCreateImage( cvGetSize(src), 8, 1); 
IplImage* planes2[] = { h_plane2, s_plane2,v_plane2 };

IplImage* hsv2 = cvCreateImage( cvGetSize(src), 8, 3 );
cvCvtColor( src, hsv2, CV_BGR2HSV );    
cvSplit( hsv2, h_plane2, s_plane2, v_plane2, 0 );
printf("h%d",h_plane2->widthStep);
printf("s%d",h_plane2->widthStep);
printf("v%d",h_plane2->widthStep);

IplImage* h_plane = cvCreateImage( cvGetSize(templ), 8, 1 );      
IplImage* s_plane = cvCreateImage( cvGetSize(templ), 8, 1 );    
IplImage* v_plane = cvCreateImage( cvGetSize(templ), 8, 1);    
IplImage* planes[] = { h_plane, s_plane,v_plane };
IplImage* hsv = cvCreateImage( cvGetSize(templ), 8, 3 );  
cvCvtColor( templ, hsv, CV_BGR2HSV );    
cvSplit( hsv, h_plane, s_plane, v_plane, 0 );
printf("h%d\n",h_plane->widthStep);
printf("s%d\n",s_plane->widthStep);
printf("v%d\n",v_plane->widthStep);

int h_bins = 16, s_bins = 16,v_bins=16;
int hist_size[] = {h_bins, s_bins,v_bins};
float h_ranges[] = {0,255};
float s_ranges[] = {0,255};
float v_ranges[] = {0,255};
float* ranges[] = { h_ranges, s_ranges,v_ranges};
CvHistogram* hist;
hist = cvCreateHist( 3, hist_size, CV_HIST_ARRAY, ranges, 1 ); 
cvCalcHist( planes, hist, 0, 0 );

CvSize temp ;
temp.height = src->height - templ->height + 1;
temp.width  = src->width - templ->width + 1;
IplImage*back_project=cvCreateImage(temp,IPL_DEPTH_32F,1);//!!归一,把改成,就弹出对话框,说planes的steps不是一致的!

cvZero(back_project);                                     //但是我去掉归一,改成就可以显示
cvCalcBackProjectPatch(planes2, back_project, cvGetSize(templ), hist,CV_COMP_INTERSECT ,1);

cvNamedWindow( "back_project" );  
cvShowImage( "back_project", back_project );  

cvWaitKey(0);


测试图像:

当模版图像小雨目标的时候,作为区域检测器,测试如下:可以找到手区域

opencv 直方图反向投影_第5张图片

当模版等于目标的时候,测试如下:输出图像,较亮的部分就是人的头部大致位置

opencv 直方图反向投影_第6张图片

基于块的反向,速度太慢了。

你可能感兴趣的:(人工智能)