[数学建模] TOPSIS法(考虑权重和不考虑权重)--评价类问题

建模算法整理,文章主要介绍了 TOPSIS法,主要用于解决评价类问题。
参考学习资料:清风数学建模
其他资源:2016到2020美赛o奖论文=== 姜启源 司守奎电子书===论文模板 ====算法代码
如果需要可私信或者评论

文章目录

  • TOPSIS法介绍
  • 层次分析法的一些局限性[引出本文]
  • 例子:单个指标的一种计算评分方式
  • 多个指标的完整处理步骤
    • 将原始矩阵正向化
    • 正向化矩阵标准化
    • 计算得分并归一化(参考例子)
  • 扩展-带权重的TOPSIS
  • 基于熵权法对Topsis模型的修正(承上)
  • 总结

TOPSIS法介绍

TOPSIS法(Technique for Order Preference by Similarity to Ideal Solution)
可翻译为逼近理想解排序法,国内常简称为优劣解距离法
TOPSIS 法是一种常用的综合评价方法,其能充分利用原始数据的信息,
其结果能精确地反映各评价方案之间的差距。

层次分析法的一些局限性[引出本文]

-评价的决策层不能太多,太多的话n会很大,判断矩阵和一致矩阵差异
可能会很大。
在这里插入图片描述

  • 如果决策层中指标的数据是已知的,那么我们如何利用这些数据来使得
    评价的更加准确呢?
    [数学建模] TOPSIS法(考虑权重和不考虑权重)--评价类问题_第1张图片

例子:单个指标的一种计算评分方式

小明同宿舍共有四名同学,他们第一学期的高数成绩如下表所示:
[数学建模] TOPSIS法(考虑权重和不考虑权重)--评价类问题_第2张图片

请你为这四名同学进行评分,该评分能合理的描述其高数成绩的高低。
方式一:
[数学建模] TOPSIS法(考虑权重和不考虑权重)--评价类问题_第3张图片
缺陷明显:可以随便修改成绩,只要保证排名不变,那么评分就不会改变!
[数学建模] TOPSIS法(考虑权重和不考虑权重)--评价类问题_第4张图片
方法二(正确的方式):

  1. 确定最高成绩:max:99

  2. 确定最低成绩:min:90

  3. 构建计算评分的公式: x − m i n m a x − m i n \frac{x-min}{max-min} maxminxmin

  4. 重新计算
    [数学建模] TOPSIS法(考虑权重和不考虑权重)--评价类问题_第5张图片

  5. 补充说明:为什么不采用 x − 0 100 − 0 \frac{x-0}{100-0} 1000x0的计算评分方式如下
    [数学建模] TOPSIS法(考虑权重和不考虑权重)--评价类问题_第6张图片
    解释:

    1. 比较的对象一般要远大于两个。(例如比较一个班级的成绩)
    2. 比较的指标也往往不只是一个方面的,例如成绩、工时数、课 外竞赛得分等。
    3. 有很多指标不存在理论上的最大值和最小值,例如衡量经济增 长水平的指标:GDP增速。

多个指标的完整处理步骤

将原始矩阵正向化

概述: 所谓的将原始矩阵正向化,就是要将所有的指标类型统一转化为极大型指标。
四种情况:
[数学建模] TOPSIS法(考虑权重和不考虑权重)--评价类问题_第7张图片
极小型指标 ->极大型指标
[数学建模] TOPSIS法(考虑权重和不考虑权重)--评价类问题_第8张图片
中间型指标 ->极大型指标
[数学建模] TOPSIS法(考虑权重和不考虑权重)--评价类问题_第9张图片
区间型指标 ->极大型指标
[数学建模] TOPSIS法(考虑权重和不考虑权重)--评价类问题_第10张图片

正向化矩阵标准化

目的: 消除不同指标量纲的影响
[数学建模] TOPSIS法(考虑权重和不考虑权重)--评价类问题_第11张图片

计算得分并归一化(参考例子)

[数学建模] TOPSIS法(考虑权重和不考虑权重)--评价类问题_第12张图片
[数学建模] TOPSIS法(考虑权重和不考虑权重)--评价类问题_第13张图片

[数学建模] TOPSIS法(考虑权重和不考虑权重)--评价类问题_第14张图片

扩展-带权重的TOPSIS

修改前步骤三
[数学建模] TOPSIS法(考虑权重和不考虑权重)--评价类问题_第15张图片
修改后步骤三
[数学建模] TOPSIS法(考虑权重和不考虑权重)--评价类问题_第16张图片
层次分析法求权重
[数学建模] TOPSIS法(考虑权重和不考虑权重)--评价类问题_第17张图片
例子(算术平均法 其他两种方式不做说明)
[数学建模] TOPSIS法(考虑权重和不考虑权重)--评价类问题_第18张图片

[数学建模] TOPSIS法(考虑权重和不考虑权重)--评价类问题_第19张图片
[数学建模] TOPSIS法(考虑权重和不考虑权重)--评价类问题_第20张图片

基于熵权法对Topsis模型的修正(承上)

概述 :判断矩阵的确定依赖于专家,如果专家的判断存在主观性的话,会对结果产生很大的影响。(主观性太强)

熵权法:是一种客观赋权方法依据的原理: 指标的变异程度越小,所反映的信息量也越少,其对应
的权值也应该越低。(客观 = 数据本身就可以告诉我们权重)
(一种极端的例子:对于所有的样本而言,这个指标都是相同的数值,
那么我们可认为这个指标的权值为0,即这个指标对于我们的评价起不
到任何帮助)

未完待续…

总结

  文章纯属建模学习整理。
最后希望给文章点个赞,整理不易!!!
最后希望给文章点个赞,整理不易!!!
最后希望给文章点个赞,整理不易!!!

你可能感兴趣的:(美赛,数学建模,清风,算法)