深度不学习——————卷积神经网络,LeNet,AlexNet,VGG详解以及PyTorch代码实现

目录

 

卷积神经网络

简单的卷积网络细节如下:

简单的卷积网络小结: 

卷积层

局部连接

空间排列:

例子:

步长的限制

参数共享

用矩阵乘法实现

扩张卷积

汇聚层

普通汇聚(General Pooling)

归一化层

全连接层

把全连接层转化成卷积层

卷积神经网络的结构 

层的排列规律

层的尺寸设置规律

减少尺寸设置的问题:

为什么在卷积层使用1的步长?

为何使用零填充?

因为内存限制所做的妥协

feature maps计算方法:

卷积

反卷积(deconvolution)

LeNet

AlexNet

ReLU非线性

局部响应归一化

重叠池化

整体架构

减少过拟合 

数据增强

失活(Dropout)

AlexNet神经网络相比LeNet

 VGG16

组成

特点

块结构

 

权重参数

VGG vs AlexNet


卷积神经网络

卷积神经网络针对输入全部是图像的情况,将结构调整得更加合理,获得了不小的优势。与常规
神经网络不同,卷积神经网络的各层中的神经元是3维排列的:宽度、高度和深度(这里的深度指的是激活数据体的
第三个维度,而不是整个网络的深度,整个网络的深度指的是网络的层数)。举个例子,CIFAR-10中的图像是作为
卷积神经网络的输入,该数据体的维度是32x32x3(宽度,高度和深度)。我们将看到,层中的神经元将只与前一层
中的一小块区域连接,而不是采取全连接方式。对于用来分类CIFAR-10中的图像的卷积网络,其最后的输出层的维
度是1x1x10,因为在卷积神经网络结构的最后部分将会把全尺寸的图像压缩为包含分类评分的一个向量,向量是在
深度方向排列的。下面是例子:

深度不学习——————卷积神经网络,LeNet,AlexNet,VGG详解以及PyTorch代码实现_第1张图片

左边是一个3层的神经网络。右边是一个卷积神经网络,图例中网络将它的神经元都排列成3个维度(宽、高和深度)。卷积神经网络的每一层都将3D的输入数据变化为神经元3D的激活数据并输出。在这个例子中,红色的输入层装的是图像,所以它的宽度和高度就是图像的宽度和高度,它的深度是3(代表了红、绿、蓝3种颜色通道)。卷积神经网络是由层组成的。每一层都有一个简单的API:用一些含或者不含参数的可导的函数,将输入的3D数据变换为3D的输出数据。

    一个用于CIFAR-10图像数据分类的卷积神经网络的结构可以是[输入层-卷积层-ReLU层-汇聚层-全连接层]。

简单的卷积网络细节如下:

  • 输入[32x32x3]存有图像的原始像素值,本例中图像宽高均为32,有3个颜色通道。
  • 卷积层中,神经元与输入层中的一个局部区域相连,每个神经元都计算自己与输入层相连的小区域与自己权重的内积。卷积层会计算所有神经元的输出。如果我们使用12个滤波器(也叫作核),得到的输出数据体的维度就是[32x32x12]。ReLU层将会逐个元素地进行激活函数操作,比如使用以0为阈值的作为激活函数。该层对数据尺寸没有改变,还是[32x32x12]。
  • 汇聚层在在空间维度(宽度和高度)上进行降采样(downsampling)操作,数据尺寸变为[16x16x12]。
  • 全连接层将会计算分类评分,数据尺寸变为[1x1x10],其中10个数字对应的就是CIFAR-10中10个类别的分类评分值。正如其名,全连接层与常规神经网络一样,其中每个神经元都与前一层中所有神经元相连接。

简单的卷积网络小结: 

  • 简单案例中卷积神经网络的结构,就是一系列的层将输入数据变换为输出数据(比如分类评分)。
  • 卷积神经网络结构中有几种不同类型的层(目前最流行的有卷积层、全连接层、ReLU层和汇聚层)。
  • 每个层的输入是3D数据,然后使用一个可导的函数将其变换为3D的输出数据。
  • 有的层有参数,有的没有(卷积层和全连接层有,ReLU层和汇聚层没有)。
  • 有的层有额外的超参数,有的没有(卷积层、全连接层和汇聚层有,ReLU层没有)。

卷积层

卷积层的参数是有一些可学习的滤波器集合构成的。每个滤波器在空间上(宽度和高度)都比较小,但是深度和输入数据一致。举例来说,卷积神经网络第一层的一个典型的滤波器的尺寸可以是5x5x3(宽高都是5像素,深度是3是因为图像应为颜色通道,所以有3的深度)。在前向传播的时候,让每个滤波器都在输入数据的宽度和高度上滑动(更精确地说是卷积),然后计算整个滤波器和输入数据任一处的内积。当滤波器沿着输入数据的宽度和高度滑过后,会生成一个2维的激活图(activation map),激活图给出了在每个空间位置处滤波器的反应。直观地来说,网络会让滤波器学习到当它看到某些类型的视觉特征时就激活,具体的视觉特征可能是某些方位上的边界,或者在第一层上某些颜色的斑点,甚至可以是网络更高层上的蜂巢状或者车轮状图案。在每个卷积层上,我们会有一整个集合的滤波器(比如12个),每个都会生成一个不同的二维激活图。将这些激活映射在深度方向上层叠起来就生成了输出数据。

局部连接

在处理图像这样的高维度输入时,让每个神经元都与前一层中的所有神经元进行全连接是不现实的。相反,我们让每个神经元只与输入数据的一个局部区域连接。该连接的空间大小叫做神经元的感受野(receptivefield),它的尺寸是一个超参数(其实就是滤波器的空间尺寸)。在深度方向上,这个连接的大小总是和输入量的深度相等。需要再次强调的是,我们对待空间维度(宽和高)与深度维度是不同的:连接在空间(宽高)上是局部的,但是在深度上总是和输入数据的深度一致。假设输入数据体尺寸为[32x32x3](比如CIFAR-10的RGB图像),如果感受野(或滤波器尺寸)是5x5,那么卷积层中的每个神经元会有输入数据体中[5x5x3]区域的权重,共5x5x3=75个权重(还要加一个偏差参数)。注意这个连接在深度维度上的大小必须为3,和输入数据体的深度一致。

深度不学习——————卷积神经网络,LeNet,AlexNet,VGG详解以及PyTorch代码实现_第2张图片

左边:红色的是输入数据体(比如CIFAR-10中的图像),蓝色的部分是第一个卷积层中的神经元。卷积层中的每个神经元都只是与输入数据体的一个局部在空间上相连,但是与输入数据体的所有深度维度全部相连(所有颜色通道)。在深度方向上有多个神经元(本例中5个),它们都接受输入数据的同一块区域(感受野相同)。至于深度列的讨论在下文中有。右边:神经网络章节中介绍的神经元保持不变,它们还是计算权重和输入的内积,然后进行激活函数运算,只是它们的连接被限制在一个局部空间。

空间排列:

上文讲解了卷积层中每个神经元与输入数据体之间的连接方式,但是尚未讨论输出数据体中神经元的数量,以及它们的排列方式。3个超参数控制着输出数据体的尺寸:深度(depth),步长(stride)和零填充(zeropadding)。下面是对它们的讨论:

1. 首先,输出数据体的深度是一个超参数:它和使用的滤波器的数量一致,而每个滤波器在输入数据中寻找一些不同的东西。举例来说,如果第一个卷积层的输入是原始图像,那么在深度维度上的不同神经元将可能被不同方向的边界,或者是颜色斑点激活。我们将这些沿着深度方向排列、感受野相同的神经元集合称为深度列(depth column),也有人使用纤维(fibre)来称呼它们。
2. 其次,在滑动滤波器的时候,必须指定步长。当步长为1,滤波器每次移动1个像素。当步长为2(或者不常用的3,或者更多,这些在实际中很少使用),滤波器滑动时每次移动2个像素。这个操作会让输出数据体在空间上变小。
3. 在下文可以看到,有时候将输入数据体用0在边缘处进行填充是很方便的。这个零填充(zero-padding)的尺寸是一个超参数。零填充有一个良好性质,即可以控制输出数据体的空间尺寸(最常用的是用来保持输入数据体在空间上的尺寸,这样输入和输出的宽高都相等)

输出数据体在空间上的尺寸可以通过输入数据体尺寸(W),卷积层中神经元的感受野尺寸(F),步长(S)和零填充的数量(P)的函数来计算。(译者注:这里假设输入数组的空间形状是正方形,即高度和宽度相等)输出数据体的空间尺寸为(W-F+2P)/S+1。比如输入是7x7,滤波器是3x3,步长为1,填充为0,那么就能得到一个5x5的输出。如果步长为2,输出就是3x3。

例子:

深度不学习——————卷积神经网络,LeNet,AlexNet,VGG详解以及PyTorch代码实现_第3张图片

空间排列的图示。在本例中只有一个空间维度(x轴),神经元的感受野尺寸F=3,输入尺寸W=5,零填充P=1。左边:神经元使用的步长S=1,所以输出尺寸是(5-3+2)/1+1=5。右边:神经元的步长S=2,则输出尺寸是(5-3+2)/2+1=3。注意当步长S=3时是无法使用的,因为它无法整齐地穿过数据体。从等式上来说,因为(5-3+2)=4是不能被3整除的。

本例中,神经元的权重是[1,0,-1],显示在图的右上角,偏差值为0。这些权重是被所有黄色的神经元共享的(参数共享的内容看下文相关内容)。使用零填充:在上面左边例子中,注意输入维度是5,输出维度也是5。之所以如此,是因为感受野是3并且使用了1的零填充。如果不使用零填充,则输出数据体的空间维度就只有3,因为这就是滤波器整齐滑过并覆盖原始数据需要的数目。一般说来,当步长时,零填充的值是,这样就能保证输入和输出数据体有相同的空间尺寸。

步长的限制

注意这些空间排列的超参数之间是相互限制的。举例说来,当输入尺寸W=10,不使用零填充则P=0,滤波器尺寸F=3,这样步长S=2就行不通,因为(W-F+2P)/S+1=(10-3+0)/2+1=4.5,结果不是整数,这就是说神经元不能整齐对称地滑过输入数据体。因此,这些超参数的设定就被认为是无效的,一个卷积神经网络库可能会报出一个错误,或者修改零填充值来让设置合理,或者修改输入数据体尺寸来让设置合理,或者其他什么措施。在后面的卷积神经网络结构小节中,读者可以看到合理地设置网络的尺寸让所有的维度都能正常工作,这件事可是相当让人头痛的。而使用零填充和遵守其他一些设计策略将会有效解决这个问题。

参数共享

在卷积层中使用参数共享是用来控制参数的数量。作一个合理的假设:如果一个特征在计算某个空间位置(x,y)的时候有用,那么它在计算另一个不同位置(x2,y2)的时候也有用。基于这个假设,可以显著地减少参数数量。换言之,就是将深度维度上一个单独的2维切片看做深度切片(depth slice),比如一个数据体尺寸为[55x55x96]的就有96个深度切片,每个尺寸为[55x55]。在每个深度切片上的神经元都使用同样的权重和偏差。在这样的参数共享下,例子中的第一个卷积层就只有96个不同的权重集了,一
个权重集对应一个深度切片,共有96x11x11x3=34,848个不同的权重,或34,944个参数(+96个偏差)。在每个深度切片中的55x55个权重使用的都是同样的参数。在反向传播的时候,都要计算每个神经元对它的权重的梯度,但是需要把同一个深度切片上的所有神经元对权重的梯度累加,这样就得到了对共享权重的梯度。这样,每个切片只更新一个权重集。注意,如果在一个深度切片中的所有权重都使用同一个权重向量,那么卷积层的前向传播在每个深度切片中可以看做是在计算神经元权重和输入数据体的卷积(这就是“卷积层”名字由来)。这也是为什么总是将这些权重集合称为滤波器(filter)(或卷积核(kernel)),因为它们和输入进行了卷积。有时候参数共享假设可能没有意义,特别是当卷积神经网络的输入图像是一些明确的中心结构时候。这时候我们就应该期望在图片的不同位置学习到完全不同的特征。一个具体的例子就是输入图像是人脸,人脸一般都处于图片中心。你可能期望不同的特征,比如眼睛特征或者头发特征可能(也应该)会在图片的不同位置被学习。在这个例子中,通常就放松参数共享的限制,将层称为局部连接层(Locally-Connected Layer)

用矩阵乘法实现

卷积运算本质上就是在滤波器和输入数据的局部区域间做点积。卷积层的常用实现方式就是利用这一点,将卷积层的前向传播变成一个巨大的矩阵乘法:

1. 输入图像的局部区域被im2col操作拉伸为列。比如,如果输入是[227x227x3],要与尺寸为11x11x3的滤波器以步长为4进行卷积,就取输入中的[11x11x3]数据块,然后将其拉伸为长度为11x11x3=363的列向量。重复进行这一过程,因为步长为4,所以输出的宽高为(227-11)/4+1=55,所以得到im2col操作的输出矩阵X_col的尺寸是[363x3025],其中每列是拉伸的感受野,共有55x55=3,025个。注意因为感受野之间有重叠,所以输入数据体中的数字在不同的列中可能有重复。
2. 卷积层的权重也同样被拉伸成行。举例,如果有96个尺寸为[11x11x3]的滤波器,就生成一个矩阵W_row,尺寸为[96x363]。
3. 现在卷积的结果和进行一个大矩阵乘np.dot(W_row, X_col)是等价的了,能得到每个滤波器和每个感受野间的点积。在我们的例子中,这个操作的输出是[96x3025],给出了每个滤波器在每个位置的点积输出。
4. 结果最后必须被重新变为合理的输出尺寸[55x55x96]。

扩张卷积

给卷积层引入了一个新的叫扩张(dilation)的超参数。到目前为止,我们只讨论了卷积层滤波器是连续的情况。但是,让滤波器中元素之间有间隙也是可以的,这就叫做扩张。举例,在某个维度上滤波器w的尺寸是3,那么计算输入x的方式是:w[0]*x[0] + w[1]*x[1] +w[2]*x[2],此时扩张为0。如果扩张为1,那么计算为: w[0]*x[0] + w[1]*x[2] + w[2]*x[4]。换句话说,操作中存在1的间隙。在某些设置中,扩张卷积与正常卷积结合起来非常有用,因为在很少的层数内更快地汇集输入图片的大尺度特征。比如,如果上下重叠2个3x3的卷积层,那么第二个卷积层的神经元的感受野是输入数据体中5x5的区域(可以成这些神经元的有效感受野是5x5)。如果我们对卷积进行扩张,那么这个有效感受野就会迅速增长。

汇聚层

通常,在连续的卷积层之间会周期性地插入一个汇聚层。它的作用是逐渐降低数据体的空间尺寸,这样的话就能减少
网络中参数的数量,使得计算资源耗费变少,也能有效控制过拟合。汇聚层使用MAX操作,对输入数据体的每一个
深度切片独立进行操作,改变它的空间尺寸。最常见的形式是汇聚层使用尺寸2x2的滤波器,以步长为2来对每个深
度切片进行降采样,将其中75%的激活信息都丢掉。每个MAX操作是从4个数字中取最大值(也就是在深度切片中某
个2x2的区域)。深度保持不变。汇聚层的一些公式:

深度不学习——————卷积神经网络,LeNet,AlexNet,VGG详解以及PyTorch代码实现_第4张图片

因为对输入进行的是固定函数计算,所以没有引入参数。在汇聚层中很少使用零填充。在实践中,最大汇聚层通常只有两种形式:一种是F=3,S=2,也叫重叠汇聚(overlapping pooling),另一个更常用的是F=2,S=2。对更大感受野进行汇聚需要的汇聚尺寸也更大,而且往往对网络有破坏性。

普通汇聚(General Pooling)

除了最大汇聚,汇聚单元还可以使用其他的函数,比如平均汇聚(averagepooling)或L-2范式汇聚(L2-norm pooling)。平均汇聚历史上比较常用,但是现在已经很少使用了。因为实践证明,最大汇聚的效果比平均汇聚要好。

深度不学习——————卷积神经网络,LeNet,AlexNet,VGG详解以及PyTorch代码实现_第5张图片

汇聚层在输入数据体的每个深度切片上,独立地对其进行空间上的降采样。左边:本例中,输入数据体尺寸[224x224x64]被降采样到了[112x112x64],采取的滤波器尺寸是2,步长为2,而深度不变。右边:最常用的降采样操作是取最大值,也就是最大汇聚,这里步长为2,每个取最大值操作是从4个数字中选取(即2x2的方块区域中)。

反向传播:回顾一下反向传播的内容,其中函数max(x,y)的反向传播可以简单理解为将梯度只沿最大的数回传。因此,在向前传播经过汇聚层的时候,通常会把池中最大元素的索引记录下来(有时这个也叫作道岔(switches)),这样在反向传播的时候梯度的路由就很高效。

归一化层

在卷积神经网络的结构中,提出了很多不同类型的归一化层,有时候是为了实现在生物大脑中观测到的抑制机制。但是这些层渐渐都不再流行,因为实践证明它们的效果即使存在,也是极其有限的。

全连接层

在全连接层中fully connected layers,FC),神经元对于前一层中的所有激活数据是全部连接的,这个常规神经网络中一样。它们的激活可以先用矩阵乘法,再加上偏差。全连接层(在整个卷积神经网络中起到“分类器”的作用。如果说卷积层、池化层和激活函数层等操作是将原始数据映射到隐层特征空间的话,全连接层则起到将学到的“分布式特征表示”映射到样本标记空间的作用。在实际使用中,全连接层可由卷积操作实现:对前层是全连接的全连接层可以转化为卷积核为1x1的卷积;而前层是卷积层的全连接层可以转化为卷积核为hxw的全局卷积,h和w分别为前层卷积结果的高和宽。

全连接的核心操作就是矩阵向量乘积 本质就是由一个特征空间线性变换到另一个特征空间。目标空间的任一维——也就是隐层的一个 cell——都认为会受到源空间的每一维的影响。不考虑严谨,可以说,目标向量是源向量的加权和。

在 CNN 中,全连接常出现在最后几层,用于对前面设计的特征做加权和。比如 mnist,前面的卷积和池化相当于做特征工程,后面的全连接相当于做特征加权。(卷积相当于全连接的有意弱化,按照局部视野的启发,把局部之外的弱影响直接抹为零影响;还做了一点强制,不同的局部所使用的参数居然一致。弱化使参数变少,节省计算量,又专攻局部不贪多求全;强制进一步减少参数。少即是多) 在 RNN 中,全连接用来把 embedding 空间拉到隐层空间,把隐层空间转回 label 空间等。
 

把全连接层转化成卷积层

全连接层和卷积层之间唯一的不同就是卷积层中的神经元只与输入数据中的一个局部区域连接,并且在卷积列中的神经元共享参数。然而在两类层中,神经元都是计算点积,所以它们的函数形式是一样的。因此,将此两者相互转化是可能的:

  • 对于任一个卷积层,都存在一个能实现和它一样的前向传播函数的全连接层。权重矩阵是一个巨大的矩阵,除了某些特定块(这是因为有局部连接),其余部分都是零。而在其中大部分块中,元素都是相等的(因为参数共享)。
  • 相反,任何全连接层都可以被转化为卷积层。比如,一个的全连接层,输入数据体的尺寸是,这个全连接层可以被等效地看做一个的卷积层。换句话说,就是将滤波器的尺寸设置为和输入数据体的尺寸一致了。因为只有一个单独的深度列覆盖并滑过输入数据体,所以输出将变成,这个结果就和使用初始的那个全连接层一样了。

 实际操作中,每次这样的变换都需要把全连接层的权重W重塑成卷积层的滤波器。那么这样的转化有什么作用呢?它在下面的情况下可以更高效:让卷积网络在一张更大的输入图片上滑动(译者注:即把一张更大的图片的不同区域都分别带入到卷积网络,得到每个区域的得分),得到多个输出,这样的转化可以让我们在单个向前传播的过程中完成上述的操作。

举个例子,如果我们想让224x224尺寸的浮窗,以步长为32在384x384的图片上滑动,把每个经停的位置都带入卷积网络,最后得到6x6个位置的类别得分。上述的把全连接层转换成卷积层的做法会更简便。如果224x224的输入图片经过卷积层和汇聚层之后得到了[7x7x512]的数组,那么,384x384的大图片直接经过同样的卷积层和汇聚层之后会得到[12x12x512]的数组(因为途径5个汇聚层,尺寸变为384/2/2/2/2/2 = 12)。然后再经过上面由3个全连接层转化得到的3个卷积层,最终得到[6x6x1000]的输出(因为(12 - 7)/1 + 1 = 6)。这个结果正是浮窗在原图经停的6x6个位置的得分!

面对384x384的图像,让(含全连接层)的初始卷积神经网络以32像素的步长独立对图像中的224x224块进行多次评价,其效果和使用把全连接层变换为卷积层后的卷积神经网络进行一次前向传播是一样的。

自然,相较于使用被转化前的原始卷积神经网络对所有36个位置进行迭代计算,使用转化后的卷积神经网络进行一次前向传播计算要高效得多,因为36次计算都在共享计算资源。这一技巧在实践中经常使用,一次来获得更好的结果。比如,通常将一张图像尺寸变得更大,然后使用变换后的卷积神经网络来对空间上很多不同位置进行评价得到分类评分,然后在求这些分值的平均值。

最后,如果我们想用步长小于32的浮窗怎么办?用多次的向前传播就可以解决。比如我们想用步长为16的浮窗。那么先使用原图在转化后的卷积网络执行向前传播,然后分别沿宽度,沿高度,最后同时沿宽度和高度,把原始图片分别平移16个像素,然后把这些平移之后的图分别带入卷积网络。 

卷积神经网络的结构 

卷积神经网络通常是由三种层构成:卷积层,汇聚层(除非特别说明,一般就是最大值汇聚)和全连接层(简称FC)。ReLU激活函数也应该算是是一层,它逐元素地进行激活函数操作。

层的排列规律

卷积神经网络最常见的形式就是将一些卷积层和ReLU层放在一起,其后紧跟汇聚层,然后重复如此直到图像在空间上被缩小到一个足够小的尺寸,在某个地方过渡成成全连接层也较为常见。最后的全连接层得到输出,比如分类评分等。换句话说,最常见的卷积神经网络结构如下:
INPUT -> [[CONV -> RELU]*N -> POOL?]*M -> [FC -> RELU]*K -> FC
其中*指的是重复次数,POOL?指的是一个可选的汇聚层。其中N >=0,通常N<=3,M>=0,K>=0,通常K<3。例如,下面是一些常见的网络结构规律:

  • INPUT -> FC,实现一个线性分类器,此处N = M = K = 0。
  • INPUT -> CONV -> RELU -> FC
  • INPUT -> [CONV -> RELU -> POOL]*2 -> FC -> RELU -> FC。此处在每个汇聚层之间有一个卷积层。
  • INPUT -> [CONV -> RELU -> CONV -> RELU -> POOL]*3 -> [FC -> RELU]*2 -> FC。此处每个汇聚层前有两个卷积层,这个思路适用于更大更深的网络,因为在执行具有破坏性的汇聚操作前,多重的卷积层可以从输入数据中学习到更多的复杂特征。

 几个小滤波器卷积层的组合比一个大滤波器卷积层好:假设你一层一层地重叠了3个3x3的卷积层(层与层之间有非线性激活函数)。在这个排列下,第一个卷积层中的每个神经元都对输入数据体有一个3x3的视野。第二个卷积层上的神经元对第一个卷积层有一个3x3的视野,也就是对输入数据体有5x5的视野。同样,在第三个卷积层上的神经元对第二个卷积层有3x3的视野,也就是对输入数据体有7x7的视野。假设不采用这3个3x3的卷积层,二是使用一个单独的有7x7的感受野的卷积层,那么所有神经元的感受野也是7x7,但是就有一些缺点。首先,多个卷积层与非线性的激活层交替的结构,比单一卷积层的结构更能提取出深层的更好的特征。其次,假设所有的数据有C个通道,那么单独的7x7卷积层将会包含 Cx(7x7xC)=49C^2 个参数,而3个3x3的卷积层的组合仅有 3xCx(3x3xC)=27C^2 个参数。直观说来,最好选择带有小滤波器的卷积层组合,而不是用一个带有大的滤波器的卷积层。前者可以表达出输入数据中更多个强力特征,使用的参数也更少。唯一的不足是,在进行反向传播时,中间的卷积层可能会导致占用更多的内存。

层的尺寸设置规律

到现在为止,我们都没有提及卷积神经网络中每层的超参数的使用。现在先介绍设置结构尺寸的一般性规则,然后根
据这些规则进行讨论:

  • 输入层(包含图像的)应该能被2整除很多次。常用数字包括32(比如CIFAR-10),64,96(比如STL-10)或224(比如ImageNet卷积神经网络),384和512。
  • 卷积层应该使用小尺寸滤波器(比如3x3或最多5x5),使用步长。还有一点非常重要,就是对输入数据进行零填充,这样卷积层就不会改变输入数据在空间维度上的尺寸。比如,当,那就使用来保持输入尺寸。当,一般对于任意,当的时候能保持输入尺寸。如果必须使用更大的滤波器尺寸(比如7x7之类),通常只用在第一个面对原始图像的卷积层上。
  • 汇聚层负责对输入数据的空间维度进行降采样。最常用的设置是用用2x2感受野(即)的最大值汇聚,步长为2( )。注意这一操作将会把输入数据中75%的激活数据丢弃(因为对宽度和高度都进行了2的降采样)。另一个不那么常用的设置是使用3x3的感受野,步长为2。最大值汇聚的感受野尺寸很少有超过3的,因为汇聚操作过于激烈,易造成数据信息丢失,这通常会导致算法性能变差。

减少尺寸设置的问题:

上文中展示的两种设置是很好的,因为所有的卷积层都能保持其输入数据的空间尺寸,汇聚层只负责对数据体从空间维度进行降采样。如果使用的步长大于1并且不对卷积层的输入数据使用零填充,那么就必须非常仔细地监督输入数据体通过整个卷积神经网络结构的过程,确认所有的步长和滤波器都尺寸互相吻合,卷积神经网络的结构美妙对称地联系在一起。


为什么在卷积层使用1的步长?

在实际应用中,更小的步长效果更好。上文也已经提过,步长为1可以让空间维度的降采样全部由汇聚层负责,卷积层只负责对输入数据体的深度进行变换。

为何使用零填充?

使用零填充除了前面提到的可以让卷积层的输出数据保持和输入数据在空间维度的不变,还可以提高算法性能。如果卷积层值进行卷积而不进行零填充,那么数据体的尺寸就会略微减小,那么图像边缘的信息就会过快地损失掉。

因为内存限制所做的妥协

在某些案例(尤其是早期的卷积神经网络结构)中,基于前面的各种规则,内存的使用量迅速飙升。例如,使用64个尺寸为3x3的滤波器对224x224x3的图像进行卷积,零填充为1,得到的激活数据体尺寸是[224x224x64]。这个数量就是一千万的激活数据,或者就是72MB的内存(每张图就是这么多,激活函数和梯度都是)。因为GPU通常因为内存导致性能瓶颈,所以做出一些妥协是必须的。在实践中,人们倾向于在网络的第一个卷积层做出妥协。例如,可以妥协可能是在第一个卷积层使用步长为2,尺寸为7x7的滤波器(比如在ZFnet中)。在AlexNet中,滤波器的尺寸的11x11,步长为4。

feature maps计算方法:

  • 对于卷积层,向下取整
  • 对于池化层:想上取整
  • output=((input+2*pad-dilation*(kernel-1)+1)/stride)+1
  • input:输入尺寸
  • output:输出尺寸
  • pad:边界填充(一般为0)
  • dilation:卷积核膨胀系数(一般为1,不膨胀)
  • stride:步长

卷积

  • 输入图片大小为300×300,依次经过一层卷积(kernel size 7×7,padding 2,stride 2),pooling(kernel size 5×5,padding 0,stride 1),又一层卷积(kernel size 5×5,padding 3,stride 1)之后,输出特征图大小为:
  • (300-7+2*2)/2+1 为149.5,取149
  • (149-5)/1+1 为145
  • (145-5+3*2)/1+1 为145
  • 研究过网络的话看到stride为1的时候,当kernel为 5 padding为1或者kernel为5 padding为2 一看就是卷积前后尺寸不变(卷积向下取整,池化向上取整)。

反卷积(deconvolution)

  • 输入:2x2, 卷积核:4x4, 滑动步长:3, 输出:7x7
  • 公式:2x4-(4-3)x(2-1)=8-1=7
  •         output_w= input_w*kernerl_size - (kernel_size - stride)*(input_w - 1)

LeNet

深度不学习——————卷积神经网络,LeNet,AlexNet,VGG详解以及PyTorch代码实现_第6张图片

LeNet-5共有7层,不包含输入,每层都包含可训练参数;每个层有多个Feature Map,每个FeatureMap通过一种卷积滤波器提取输入的一种特征,然后每个FeatureMap有多个神经元。

1. C1是一个卷积层

输入图片:32*32

卷积核大小:5*5

卷积核种类:6

输出featuremap大小:28*28 (32-5+1)

神经元数量:28*28*6

可训练参数:(5*5+1)*6(每个滤波器5*5=25个unit参数和一个bias参数,一共6个滤波器)

连接数:(5*5+1)*6*28*28

2. S2层是一个下采样层

输入:28*28

采样区域:2*2

采样方式:4个输入相加,乘以一个可训练参数,再加上一个可训练偏置。结果通过sigmoid

采样种类:6

输出featureMap大小:14*14(28/2)

神经元数量:14*14*6

可训练参数:2*6(和的权+偏置)

连接数:(2*2+1)*6*14*14

S2中每个特征图的大小是C1中特征图大小的1/4

3. C3层也是一个卷积层

输入:S2中所有6个或者几个特征map组合

卷积核大小:5*5

卷积核种类:16

输出featureMap大小:10*10

C3中的每个特征map是连接到S2中的所有6个或者几个特征map的,表示本层的特征map是上一层提取到的特征map的不同组合

存在的一个方式是:C3的前6个特征图以S2中3个相邻的特征图子集为输入。接下来6个特征图以S2中4个相邻特征图子集为输入。然后的3个以不相邻的4个特征图子集为输入。最后一个将S2中所有特征图为输入。

则:可训练参数:6*(3*25+1)+6*(4*25+1)+3*(4*25+1)+(25*6+1)=1516

连接数:10*10*1516=151600

 

4. S4层是一个下采样层

输入:10*10

采样区域:2*2

采样方式:4个输入相加,乘以一个可训练参数,再加上一个可训练偏置。结果通过sigmoid

采样种类:16

输出featureMap大小:5*5(10/2)

神经元数量:5*5*16=400

可训练参数:2*16=32(和的权+偏置)

连接数:16*(2*2+1)*5*5=2000

S4中每个特征图的大小是C3中特征图大小的1/4�

5. C5层是一个卷积层

输入:S4层的全部16个单元特征map(与s4全相连)

卷积核大小:5*5

卷积核种类:120

输出featureMap大小:1*1(5-5+1)

可训练参数/连接:120*(16*5*5+1)=48120

6. F6层全连接层

输入:c5 120维向量

计算方式:计算输入向量和权重向量之间的点积,再加上一个偏置,结果通过sigmoid函数

可训练参数:84*(120+1)=10164

#net
class Flatten(torch.nn.Module):  #展平操作
    def forward(self, x):
        return x.view(x.shape[0], -1)

class Reshape(torch.nn.Module): #将图像大小重定型
    def forward(self, x):
        return x.view(-1,1,28,28)      #(B x C x H x W)
    
net = torch.nn.Sequential(     #Lelet                                                  
    Reshape(),
    nn.Conv2d(in_channels=1, out_channels=6, kernel_size=5, padding=2), #b*1*28*28  =>b*6*28*28
    nn.Sigmoid(),                                                       
    nn.AvgPool2d(kernel_size=2, stride=2),                              #b*6*28*28  =>b*6*14*14
    nn.Conv2d(in_channels=6, out_channels=16, kernel_size=5),           #b*6*14*14  =>b*16*10*10
    nn.Sigmoid(),
    nn.AvgPool2d(kernel_size=2, stride=2),                              #b*16*10*10  => b*16*5*5
    Flatten(),                                                          #b*16*5*5   => b*400
    nn.Linear(in_features=16*5*5, out_features=120),
    nn.Sigmoid(),
    nn.Linear(120, 84),
    nn.Sigmoid(),
    nn.Linear(84, 10)
)
#print
X = torch.randn(size=(1,1,28,28), dtype = torch.float32)
for layer in net:
    X = layer(X)
    print(layer.__class__.__name__,'output shape: \t',X.shape)

深度不学习——————卷积神经网络,LeNet,AlexNet,VGG详解以及PyTorch代码实现_第7张图片

可以看到,在卷积层块中输入的高和宽在逐层减小。卷积层由于使用高和宽均为5的卷积核,从而将高和宽分别减小4,而池化层则将高和宽减半,但通道数则从1增加到16。全连接层则逐层减少输出个数,直到变成图像的类别数10。

深度不学习——————卷积神经网络,LeNet,AlexNet,VGG详解以及PyTorch代码实现_第8张图片


参考:https://www.jianshu.com/p/ce609f9b5910

AlexNet

我们的网络架构概括为图2。它包含八个学习层--5个卷积层和3个全连接层。下面,我们将描述我们网络结构中的一些新奇的不寻常的特性。

ReLU非线性

将神经元输出f建模为输入x的函数的标准方式是用f(x) = tanh(x)f(x) = (1 + e−x)−1。考虑到梯度下降的训练时间,这些饱和的非线性比非饱和非线性f(x) = max(0,x)更慢。根据Nair和Hinton[20]的说法,我们将这种非线性神经元称为修正线性单元(ReLU)。采用ReLU的深度卷积神经网络训练时间比等价的tanh单元要快几倍。在图1中,对于一个特定的四层卷积网络,在CIFAR-10数据集上达到25%的训练误差所需要的迭代次数可以证实这一点。这幅图表明,如果我们采用传统的饱和神经元模型,我们将不能在如此大的神经网络上实验该工作。

深度不学习——————卷积神经网络,LeNet,AlexNet,VGG详解以及PyTorch代码实现_第9张图片

图1:使用ReLU的四层卷积神经网络在CIFAR-10数据集上达到25%的训练误差比使用tanh神经元的等价网络(虚线)快六倍。为了使训练尽可能快,每个网络的学习率是单独选择的。没有采用任何类型的正则化。影响的大小随着网络结构的变化而变化,这一点已得到证实,但使用ReLU的网络都比等价的饱和神经元快几倍。

深度不学习——————卷积神经网络,LeNet,AlexNet,VGG详解以及PyTorch代码实现_第10张图片

 

CNN架构图解,明确描述了两个GPU之间的责任。在图的顶部,一个GPU运行在部分层上,而在图的底部,另一个GPU运行在部分层上。GPU只在特定的层进行通信。网络的输入是150,528维,网络剩下层的神经元数目分别是253,440–186,624–64,896–64,896–43,264–4096–4096–1000(8层)。

局部响应归一化

ReLU具有让人满意的特性,它不需要通过输入归一化来防止饱和。如果至少一些训练样本对ReLU产生了正输入,那么那个神经元上将发生学习。然而,我们仍然发现接下来的局部响应归一化有助于泛化。表示神经元激活,通过在(x,y)位置应用核i,然后应用ReLU非线性来计算,响应归一化激活通过下式给定:

求和运算在n个“毗邻的”核映射的同一位置上执行,N是本层的卷积核数目。核映射的顺序当然是任意的,在训练开始前确定。响应归一化的顺序实现了一种侧抑制形式,灵感来自于真实神经元中发现的类型,为使用不同核进行神经元输出计算的较大活动创造了竞争。常量k,n,α,β是超参数,它们的值通过验证集确定;我们设k=2,n=5,α=0.0001,β=0.75。我们在特定的层使用的ReLU非线性之后应用了这种归一化。

重叠池化

CNN中的池化层归纳了同一核映射上相邻组神经元的输出。习惯上,相邻池化单元归纳的区域是不重叠的(例如[17, 11, 4])。更确切的说,池化层可看作由池化单元网格组成,网格间距为个像素,每个网格归纳池化单元中心位置大小的邻居。如果设置,我们会得到通常在CNN中采用的传统局部池化。如果设置,我们会得到重叠池化。这就是我们网络中使用的方法,设置,。这个方案分别降低了top-1 0.4%top-5 0.3%的错误率,与非重叠方案相比,输出的维度是相等的。我们在训练过程中通常观察采用重叠池化的模型,发现它更难过拟合。

整体架构

现在我们准备描述我们的CNN的整体架构。如图2所示,我们的网络包含8个带权重的层;前5层是卷积层,剩下的3层是全连接层。最后一层全连接层的输出是1000维softmax的输入,softmax会产生1000类标签的分布。我们的网络最大化多项逻辑回归的目标,这等价于最大化预测分布下训练样本正确标签的对数概率的均值。

第2,4,5卷积层的核只与位于同一GPU上的前一层的核映射相连接(看图2)。第3卷积层的核与第2层的所有核映射相连。全连接层的神经元与前一层的所有神经元相连。第1,2卷积层之后是响应归一化层。最大池化层在响应归一化层和第5卷积层之后。ReLU非线性应用在每个卷积层和全连接层的输出上。

第1卷积层使用96个核对224 × 224 × 3的输入图像进行滤波,核大小为11 × 11 × 3,步长是4个像素(核映射中相邻神经元感受野中心之间的距离)。第2卷积层使用用第1卷积层的输出(响应归一化和池化)作为输入,并使用256个核进行滤波,核大小为5 × 5 × 48。第3,4,5卷积层互相连接,中间没有接入池化层或归一化层。第3卷积层有384个核,核大小为3 × 3 × 256,与第2卷积层的输出(归一化的,池化的)相连。第4卷积层有384个核,核大小为3 × 3 × 192,第5卷积层有256个核,核大小为3 × 3 × 192。每个全连接层有4096个神经元。

  • 输入层:图像大小为 227×227×3,其中 3 表示输入图像的 channel 数(R,G,B)为 3。
  • 卷积层:filter 大小 11×11,filter 个数 96,卷积步长 s=4s=4。(filter 大小只列出了宽和高,filter矩阵的 channel 数和输入图片的 channel 数一样,在这里没有列出)
  • 池化层:max pooling,filter 大小 3×3,步长 s=2s=2。
  • 卷积层:filter 大小 5×5,filter 个数 256,步长 s=1s=1,padding 使用 same convolution,即使得卷积层输出图像和输入图像在宽和高上保持不变。
  • 池化层:max pooling,filter 大小 3×3,步长 s=2s=2。
  • 卷积层:filter 大小 3×3,filter 个数 384,步长 s=1s=1,padding 使用 same convolution。
  • 卷积层:filter 大小 3×3,filter 个数 384,步长 s=1s=1,padding 使用 same convolution。
  • 卷积层:filter 大小 3×3,filter 个数 256,步长 s=1s=1,padding 使用 same convolution。
  • 池化层:max pooling,filter 大小 3×3,步长 s=2s=2;池化操作结束后,将大小为  6×6×256 的输出矩阵 flatten 成一个 9216 维的向量。
  • 全连接层:neuron 数量为 4096。
  • 全连接层:neuron 数量为 4096。
  • 全连接层,输出层:softmax 激活函数,neuron 数量为 1000,代表 1000 个类别。

减少过拟合 

数据增强

第一种数据增强方式包括产生图像变换和水平翻转。我们从256×256图像上通过随机提取224 × 224的图像块实现了这种方式,然后在这些提取的图像块上进行训练。这通过一个2048因子增大了我们的训练集,尽管最终的训练样本是高度相关的。没有这个方案,我们的网络会有大量的过拟合,这会迫使我们使用更小的网络。在测试时,网络会提取5个224 × 224的图像块(四个角上的图像块和中心的图像块)和它们的水平翻转(因此总共10个图像块)进行预测,然后对网络在10个图像块上的softmax层进行平均。

第二种数据增强方式包括改变训练图像的RGB通道的强度。具体地,我们在整个ImageNet训练集上对RGB像素值集合执行PCA。对于每幅训练图像,我们加上多倍找到的主成分,大小成正比的对应特征值乘以一个随机变量,随机变量通过均值为0,标准差为0.1的高斯分布得到。因此对于每幅RGB图像像素,我们加上下面的数量:

分别是RGB像素值3 × 3协方差矩阵的第i个特征向量和特征值,是前面提到的随机变量。对于某个训练图像的所有像素,每个只获取一次,直到图像进行下一次训练时才重新获取。这个方案近似抓住了自然图像的一个重要特性,即光照的颜色和强度发生变化时,目标身份是不变的。这个方案减少了top 1错误率1%以上。

失活(Dropout)

将许多不同模型的预测结合起来是降低测试误差[1, 3]的一个非常成功的方法,但对于需要花费几天来训练的大型神经网络来说,这似乎太昂贵了。然而,有一个非常有效的模型结合版本,它只花费两倍的训练成本。这种最近引入的技术,叫做“dropout”[10],它会以0.5的概率对每个隐层神经元的输出设为0。那些“失活的”的神经元不再进行前向传播并且不参与反向传播。因此每次输入时,神经网络会采样一个不同的架构,但所有架构共享权重。这个技术减少了复杂的神经元互适应,因为一个神经元不能依赖特定的其它神经元的存在。因此,神经元被强迫学习更鲁棒的特征,它在与许多不同的其它神经元的随机子集结合时是有用的。在测试时,我们使用所有的神经元但它们的输出乘以0.5,对指数级的许多失活网络的预测分布进行几何平均,这是一种合理的近似。

参考:https://www.jianshu.com/p/ea922866e3be

#目前GPU算力资源预计17日上线,在此之前本代码只能使用CPU运行。
#考虑到本代码中的模型过大,CPU训练较慢,
#我们还将代码上传了一份到 https://www.kaggle.com/boyuai/boyu-d2l-modernconvolutionalnetwork
#如希望提前使用gpu运行请至kaggle。


import time
import torch
from torch import nn, optim
import torchvision
import numpy as np
import sys
sys.path.append("/home/kesci/input/") 
import d2lzh1981 as d2l
import os
import torch.nn.functional as F

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

class AlexNet(nn.Module):
    def __init__(self):
        super(AlexNet, self).__init__()
        self.conv = nn.Sequential(
            nn.Conv2d(1, 96, 11, 4), # in_channels, out_channels, kernel_size, stride, padding
            nn.ReLU(),
            nn.MaxPool2d(3, 2), # kernel_size, stride
            # 减小卷积窗口,使用填充为2来使得输入与输出的高和宽一致,且增大输出通道数
            nn.Conv2d(96, 256, 5, 1, 2),
            nn.ReLU(),
            nn.MaxPool2d(3, 2),
            # 连续3个卷积层,且使用更小的卷积窗口。除了最后的卷积层外,进一步增大了输出通道数。
            # 前两个卷积层后不使用池化层来减小输入的高和宽
            nn.Conv2d(256, 384, 3, 1, 1),
            nn.ReLU(),
            nn.Conv2d(384, 384, 3, 1, 1),
            nn.ReLU(),
            nn.Conv2d(384, 256, 3, 1, 1),
            nn.ReLU(),
            nn.MaxPool2d(3, 2)
        )
         # 这里全连接层的输出个数比LeNet中的大数倍。使用丢弃层来缓解过拟合
        self.fc = nn.Sequential(
            nn.Linear(256*5*5, 4096),
            nn.ReLU(),
            nn.Dropout(0.5),
            #由于使用CPU镜像,精简网络,若为GPU镜像可添加该层
            #nn.Linear(4096, 4096),
            #nn.ReLU(),
            #nn.Dropout(0.5),

            # 输出层。由于这里使用Fashion-MNIST,所以用类别数为10,而非论文中的1000
            nn.Linear(4096, 10),
        )

    def forward(self, img):

        feature = self.conv(img)
        output = self.fc(feature.view(img.shape[0], -1))
        return output
net = AlexNet()
print(net)

深度不学习——————卷积神经网络,LeNet,AlexNet,VGG详解以及PyTorch代码实现_第11张图片

AlexNet神经网络相比LeNet

  • 使用ReLU激活函数。在AlexNet之前,神经网络一般都使用sigmoid或tanh作为激活函数,这类函数在自变量非常大或者非常小时,函数输出基本不变,称之为饱和函数。为了提高训练速度,AlexNet使用了修正线性函数ReLU,它是一种非饱和函数,与 sigmoid 和tanh 函数相比,ReLU分片的线性结构实现了非线性结构的表达能力,梯度消失现象相对较弱,有助于训练更深层的网络。
  • 使用GPU训练。与CPU不同的是,GPU转为执行复杂的数学和几何计算而设计,AlexNet使用了2个GPU来提升速度,分别放置一半卷积核。
  • 局部响应归一化。AlexNet使用局部响应归一化技巧,将ImageNet上的top-1与top-5错误率分别减少了1.4%和1.2%。
  • 重叠池化层。与不重叠池化层相比,重叠池化层有助于缓解过拟合,使得AlexNet的top-1和top-5错误率分别降低了0.4%和0.3%。
  • 减少过拟合。AlexNet使用了数据扩增与丢失输出两种技巧。数据扩增:a、图像的平移、翻转,b、基于PCA的RGB强度调整。丢失输出技巧(DropOut层),AlexNet以0.5的概率将两个全连接层神经元的输出设置为0,有效阻止了过拟合现象的发生。

 VGG16


深度不学习——————卷积神经网络,LeNet,AlexNet,VGG详解以及PyTorch代码实现_第12张图片 vgg 16

深度不学习——————卷积神经网络,LeNet,AlexNet,VGG详解以及PyTorch代码实现_第13张图片

组成

我们针对VGG16进行具体分析发现,VGG16共包含:

  • 13个卷积层(Convolutional Layer),分别用conv3-XXX表示
  • 3个全连接层(Fully connected Layer),分别用FC-XXXX表示
  • 5个池化层(Pool layer),分别用maxpool表示

其中,卷积层和全连接层具有权重系数,因此也被称为权重层,总数目为13+3=16,这即是VGG16中16的来源。(池化层不涉及权重,因此不属于权重层,不被计数)。

特点

VGG16的突出特点是简单,体现在:

  1. 卷积层均采用相同的卷积核参数

    卷积层均表示为conv3-XXX,其中conv3说明该卷积层采用的卷积核的尺寸(kernel size)是3,即宽(width)和高(height)均为3,3*3很小的卷积核尺寸,结合其它参数(步幅stride=1,填充方式padding=same),这样就能够使得每一个卷积层(张量)与前一层(张量)保持相同的宽和高。XXX代表卷积层的通道数。

  2. 池化层均采用相同的池化核参数

    池化层的参数均为2××2,步幅stride=2,max的池化方式,这样就能够使得每一个池化层(张量)的宽和高是前一层(张量)的1212。

  3. 模型是由若干卷积层和池化层堆叠(stack)的方式构成,比较容易形成较深的网络结构(在2014年,16层已经被认为很深了)。

综合上述分析,可以概括VGG的优点为: Small filters, Deeper networks.

深度不学习——————卷积神经网络,LeNet,AlexNet,VGG详解以及PyTorch代码实现_第14张图片

块结构

我们注意图1右侧,VGG16的卷积层和池化层可以划分为不同的块(Block),从前到后依次编号为Block1~block5。每一个块内包含若干卷积层一个池化层。例如:Block4包含:

  • 3个卷积层,conv3-512
  • 1个池化层,maxpool

并且同一块内,卷积层的通道(channel)数是相同的,例如:

  • block2中包含2个卷积层,每个卷积层用conv3-128表示,即卷积核为:3x3x3,通道数都是128
  • block3中包含3个卷积层,每个卷积层用conv3-256表示,即卷积核为:3x3x3,通道数都是256

下面给出按照块划分的VGG16的结构图,可以结合图2进行理解:

深度不学习——————卷积神经网络,LeNet,AlexNet,VGG详解以及PyTorch代码实现_第15张图片

 

VGG的输入图像是 224x224x3 的图像张量(tensor),随着层数的增加,后一个块内的张量相比于前一个块内的张量:

  • 通道数翻倍,由64依次增加到128,再到256,直至512保持不变,不再翻倍
  • 高和宽变减半,由 224→112→56→28→14→7

权重参数

尽管VGG的结构简单,但是所包含的权重数目却很大,达到了惊人的139,357,544个参数。这些参数包括卷积核权重全连接层权重

  • 例如,对于第一层卷积,由于输入图的通道数是3,网络必须学习大小为3x3,通道数为3的的卷积核,这样的卷积核有64个,因此总共有(3x3x3)x64 = 1728个参数
  • 计算全连接层的权重参数数目的方法为:前一层节点数×本层的节点数前一层节点数×本层的节点数。因此,全连接层的参数分别为:
    • 7x7x512x4096 = 1027,645,444
    • 4096x4096 = 16,781,321
    • 4096x1000 = 4096000

参考:https://www.cnblogs.com/lfri/p/10493408.html

 

def vgg_block(num_convs, in_channels, out_channels): #卷积层个数,输入通道数,输出通道数
    blk = []
    for i in range(num_convs):
        if i == 0:
            blk.append(nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1))
        else:
            blk.append(nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1))
        blk.append(nn.ReLU())
    blk.append(nn.MaxPool2d(kernel_size=2, stride=2)) # 这里会使宽高减半
    return nn.Sequential(*blk)
conv_arch = ((1, 1, 64), (1, 64, 128), (2, 128, 256), (2, 256, 512), (2, 512, 512))
# 经过5个vgg_block, 宽高会减半5次, 变成 224/32 = 7
fc_features = 512 * 7 * 7 # c * w * h
fc_hidden_units = 4096 # 任意
def vgg(conv_arch, fc_features, fc_hidden_units=4096):
    net = nn.Sequential()
    # 卷积层部分
    for i, (num_convs, in_channels, out_channels) in enumerate(conv_arch):
        # 每经过一个vgg_block都会使宽高减半
        net.add_module("vgg_block_" + str(i+1), vgg_block(num_convs, in_channels, out_channels))
    # 全连接层部分
    net.add_module("fc", nn.Sequential(d2l.FlattenLayer(),
                                 nn.Linear(fc_features, fc_hidden_units),
                                 nn.ReLU(),
                                 nn.Dropout(0.5),
                                 nn.Linear(fc_hidden_units, fc_hidden_units),
                                 nn.ReLU(),
                                 nn.Dropout(0.5),
                                 nn.Linear(fc_hidden_units, 10)
                                ))
    return net
net = vgg(conv_arch, fc_features, fc_hidden_units)
X = torch.rand(1, 1, 224, 224)

# named_children获取一级子模块及其名字(named_modules会返回所有子模块,包括子模块的子模块)
for name, blk in net.named_children(): 
    X = blk(X)
    print(name, 'output shape: ', X.shape)

深度不学习——————卷积神经网络,LeNet,AlexNet,VGG详解以及PyTorch代码实现_第16张图片

ratio = 8
small_conv_arch = [(1, 1, 64//ratio), (1, 64//ratio, 128//ratio), (2, 128//ratio, 256//ratio), 
                   (2, 256//ratio, 512//ratio), (2, 512//ratio, 512//ratio)]
net = vgg(small_conv_arch, fc_features // ratio, fc_hidden_units // ratio)
print(net)
//
结果:
Sequential(
  (vgg_block_1): Sequential(
    (0): Conv2d(1, 8, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (1): ReLU()
    (2): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
  )
  (vgg_block_2): Sequential(
    (0): Conv2d(8, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (1): ReLU()
    (2): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
  )
  (vgg_block_3): Sequential(
    (0): Conv2d(16, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (1): ReLU()
    (2): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (3): ReLU()
    (4): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
  )
  (vgg_block_4): Sequential(
    (0): Conv2d(32, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (1): ReLU()
    (2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (3): ReLU()
    (4): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
  )
  (vgg_block_5): Sequential(
    (0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (1): ReLU()
    (2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (3): ReLU()
    (4): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
  )
  (fc): Sequential(
    (0): FlattenLayer()
    (1): Linear(in_features=3136, out_features=512, bias=True)
    (2): ReLU()
    (3): Dropout(p=0.5, inplace=False)
    (4): Linear(in_features=512, out_features=512, bias=True)
    (5): ReLU()
    (6): Dropout(p=0.5, inplace=False)
    (7): Linear(in_features=512, out_features=10, bias=True)
  )
)
//
batchsize=16
#batch_size = 64
# 如出现“out of memory”的报错信息,可减小batch_size或resize
# train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=224)
lr, num_epochs = 0.001, 5
optimizer = torch.optim.Adam(net.parameters(), lr=lr)
d2l.train_ch5(net, train_iter, test_iter, batch_size, optimizer, device, num_epochs)
⽹络中的⽹络(NiN)
LeNet、AlexNet和VGG:先以由卷积层构成的模块充分抽取 空间特征,再以由全连接层构成的模块来输出分类结果。
NiN:串联多个由卷积层和“全连接”层构成的小⽹络来构建⼀个深层⽹络。
⽤了输出通道数等于标签类别数的NiN块,然后使⽤全局平均池化层对每个通道中所有元素求平均并直接⽤于分类。

Image Name

1×1卷积核作用
1.放缩通道数:通过控制卷积核的数量达到通道数的放缩。
2.增加非线性。1×1卷积核的卷积过程相当于全连接层的计算过程,并且还加入了非线性激活函数,从而可以增加网络的非线性。
3.计算参数少

def nin_block(in_channels, out_channels, kernel_size, stride, padding):
    blk = nn.Sequential(nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding),
                        nn.ReLU(),
                        nn.Conv2d(out_channels, out_channels, kernel_size=1),
                        nn.ReLU(),
                        nn.Conv2d(out_channels, out_channels, kernel_size=1),
                        nn.ReLU())
    return blk

# 已保存在d2lzh_pytorch
class GlobalAvgPool2d(nn.Module):
    # 全局平均池化层可通过将池化窗口形状设置成输入的高和宽实现
    def __init__(self):
        super(GlobalAvgPool2d, self).__init__()
    def forward(self, x):
        return F.avg_pool2d(x, kernel_size=x.size()[2:])
net = nn.Sequential(
    nin_block(1, 96, kernel_size=11, stride=4, padding=0),
    nn.MaxPool2d(kernel_size=3, stride=2),
    nin_block(96, 256, kernel_size=5, stride=1, padding=2),
    nn.MaxPool2d(kernel_size=3, stride=2),
    nin_block(256, 384, kernel_size=3, stride=1, padding=1),
    nn.MaxPool2d(kernel_size=3, stride=2), 
    nn.Dropout(0.5),
    # 标签类别数是10
    nin_block(384, 10, kernel_size=3, stride=1, padding=1),
    GlobalAvgPool2d(), 
    # 将四维的输出转成二维的输出,其形状为(批量大小, 10)
    d2l.FlattenLayer())

X = torch.rand(1, 1, 224, 224)
for name, blk in net.named_children(): 
    X = blk(X)
    print(name, 'output shape: ', X.shape)

 

VGG vs AlexNet

深度不学习——————卷积神经网络,LeNet,AlexNet,VGG详解以及PyTorch代码实现_第17张图片

由上图所知,VGG一共有五段卷积,每段卷积之后紧接着最大池化层,作者一共实验了6种网络结构。分别是VGG-11,VGG-13,VGG-16,VGG-19,网络的输入是224*224大小的图像,输出是图像分类结果(本文只针对网络在图像分类任务上,图像定位任务上暂不做分析) 
接下来开始对VGG做详细的分析,首先VGG是基于Alexnet网络的,VGG在Alexnet基础上对深度神经网络在深度和宽度上做了更多深入的研究,业界普遍认为,更深的网络具有比浅网络更强的表达能力,更能刻画现实,完成更复杂的任务。 
首先,VGG与Alexnet相比,具有如下改进几点:

  • 去掉了LRN层,作者发现深度网络中LRN的作用并不明显,干脆取消了
  • 采用更小的卷积核-3x3,Alexnet中使用了更大的卷积核,比如有7x7的,因此VGG相对于Alexnet而言,参数量更少
  • 池化核变小,VGG中的池化核是2x2,stride为2,Alexnet池化核是3x3,步长为2

这样做改进都是有一些原因的,首先为了更好的探究深度对网络的影响,必须要解决参数量的问题,更深的网络意味着更多的参数,训练更困难,使用大卷积核时尤其明显。作者通过分析,认为由于卷积神经网络的特性,3x3大小的卷积核足以捕捉到横、竖以及斜对角像素的变化。使用大卷积核会带来参数量的爆炸不说,而且图像中会存在一些部分被多次卷积,可能会给特征提取带来困难,所以在VGG中,普遍使用3x3的卷积。 

另外在VGG网络的最后几层使用了三层全连接层,最终接一个softmax,事实上,这三层全连接层的参数在VGG的整体参数中占据了很大一部分,不过就目前来讲,为了减少参数量,后几层的全连接网络都被全剧平均池化(globalglobal averageaverage poolingpooling)和卷积操作代替了,但是全局平均池化也有很大的优点。

众所周知,VGG是一个良好的特征提取器,其与训练好的模型也经常被用来做其他事情,比如计算perceptual loss(风格迁移和超分辨率任务中),尽管现在resnet和inception网络等等具有很高的精度和更加简便的网络结构,但是在特征提取上,VGG一直是一个很好的网络,所以说,当你的某些任务上resnet或者inception等表现并不好时,不妨试一下VGG,或许会有意想不到的结果。

 

参考:https://blog.csdn.net/qq_25737169/article/details/79084205

参考:https://blog.csdn.net/qq_25737169/article/details/79084205 

参考:cs231n课件

代码参考:伯禹人工智能学院

你可能感兴趣的:(深度学习,神经网络)