伴随着模糊集理论的形成、发展和深化,RusPini率先提出模糊划分的概念。以此为起点和基础,模糊聚类理论和方法迅速蓬勃发展起来。针对不同的应用,人们提出了很多模糊聚类算法,比较典型的有基于相似性关系和模糊关系的方法、基于模糊等价关系的传递闭包方法、基于模糊图论的最大支撑树方法,以及基于数据集的凸分解、动态规划和难以辨别关系等方法。然而,上述方法均不能适用于大数据量的情况,难以满足实时性要求较高的场合,因此实际应用并不广泛。
模糊聚类分析按照聚类过程的不同大致可以分为三大类:
(1)基于模糊关系的分类法:其中包括谱系聚类算法(又称系统聚类法)、基于等价关系的聚类算法、基于相似关系的聚类算法和图论聚类算法等等。它是研究比较早的一种方法,但是由于它不能适用于大数据量的情况,所以在实际中的应用并不广泛。
(2)基于目标函数的模糊聚类算法:该方法把聚类分析归结成一个带约束的非线性规划问题,通过优化求解获得数据集的最优模糊划分和聚类。该方法设计简单、解决问题的范围广,还可以转化为优化问题而借助经典数学的非线性规划理论求解,并易于计算机实现。因此,随着计算机的应用和发展,基于目标函数的模糊聚类算法成为新的研究热点。
(3)基于神经网络的模糊聚类算法:它是兴起比较晚的一种算法,主要是采用竞争学习算法来指导网络的聚类过程。
在介绍算法之前,先介绍下模糊集合的知识。
HCM聚类算法
首先说明隶属度函数的概念。隶属度函数是表示一个对象x 隶属于集合A 的程度的函数,通常记做μA(x),其自变量范围是所有可能属于集合A 的对象(即集合A 所在空间中的所有点),取值范围是[0,1],即0<=μA(x),μA(x)<=1。μA(x)=1 表示x 完全隶属于集合A,相当于传统集合概念上的x∈A。一个定义在空间X={x}上的隶属度函数就定义了一个模糊集合A,或者叫定义在论域X={x}上的模糊子集A’。对于有限个对象x1,x2,……,xn 模糊集合A’可以表示为:
FCM算法流程图
FCM算法是目前比较流行的一种模糊聚类算法,究其原因大致有以下几个方面:首先,模糊C—均值泛函Jm仍是传统硬C一均值泛函J1的自然推广;硬C一均值泛函J1是一个应用十分广泛的聚类准则,对其在理论上的研究己经相当完善,这就为Jm的研究提供了良好的条件;数学上看,Jm与RS的希尔伯特空间结构(正交投影和均方逼近理论)有密切的关系,因此比其它泛函有更深厚的数学基础;最后,也是最重要的是该目标函数不仅在许多领域获得了非常成功的应用,而且以FCM算法为基础,人们提出的基于其它原型的模糊聚类算法,形成了一大批FCM类型的算法:如模糊C一线(FCL)、模糊C一面(FCP)等聚类算法,分别实现了对呈线状、超平面状结构模式子集(或聚类)的检测。
FCM算法应用到颜色迁移中
钱小燕等人将聚类算法应用到色彩迁移中,提出了一种基于图像模糊颜色聚类的自适应色彩迁移算法。该算法首先将源图像和目标图像分别转换到lαβ颜色空间:利用FCM 算法把源图像和目标图像划分为具有不同颜色特征的聚类,然后分析图像中的颜色特征:分别算出每个域的匹配权值,对每个目标图像的匹配权值,从源图像中选取一个最接近域作为最佳匹配域;最后根据目标图像各聚类域与源图像中的匹配域之间的关系,引入隶属度因子,两个域的处理结果分别进行加权平均,获得色彩迁移结果。使用FCM的思想对图像进行聚类域划分的思路是:设准备处理图像I的大小是S×H,即对颜色聚类颜色分析的个数是N,N = S×H,则图像I可表示成集合,I={p1 ,p2 ...,pn }。图像被分为c类,每个类的聚类中心为V={v1,v2 ...,vc },用uik表示像素pk隶属于聚类中心Vi的隶属度,定义图像的隶属度矩阵U。具体算法如下:
步骤一:把源图像和目标图像分别从RGB转换到lαβ空间。
步骤二:确定待处理图像聚类域个数c,然后初始化聚类中心。假设加权指数m=2,设定处理的最大迭代次数为50。
步骤三:当迭代次数T 小于50 时,根据初始化聚类中心计算隶属度矩阵。如果pk≠vi,则对于所有的vi ( i=1,2,…,C ),利用下式计算隶属度矩阵。
%% 程序分享
%--------------------------------------
clear
close all
clc
%% %%%%%%%%%%%%%%%图像%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
I=imread('3096.jpg');
if size(I,3) == 3
I=rgb2gray(I);
else
end
I=im2double(I);
figure;imshow(I);title('(a)原始图像')
% I=I;%不加噪声
%I=imnoise(I,'speckle',deta_2);
% I=imnoise(I,'salt & pepper',0.05); %加噪图
% I=imnoise(I,'gaussian',0,0.01); % 加高斯噪声
figure;imshow(I);title('(b)加噪图像');
imwrite(I,'2.jpg');
[m,n]=size(I);
%k 聚类数目
k=2;
% k=3;
I4 = I(:); %% 将图像灰度按列排列
%% ------------------------ fcm算法------------------------
fcm_spatial_mean_label=zeros(m*n,1);
t=cputime;
tic;
[O2, U2, obj_fcn2] = fcm(I4, k);
toc;
time_fcm_spatial_mean=cputime-t;
%% 最大隶属度原则
maxU2 = max(U2); %隶属度最大
for j=1:k
index = find(U2(j, :) == maxU2); %隶属度最大对应的像素位置
fcm_spatial_mean_label(index) = j;
end
labels2=reshape(fcm_spatial_mean_label,[m n]);
labels2=uint16(labels2);
%% 显示聚类分割图
labels2(find(labels2==1))=0;
labels2(find(labels2==2))=255;
labels2(find(labels2==3))=180;
labels2(find(labels2==4))=100;
labels2=uint8(labels2);
figure;imshow(labels2,[]);title('(c)聚类分割图');
imwrite(labels2,'3.1.tiff','tiff','Resolution',300);%输出结果,保存为tif图片
完整代码或者代写添加QQ912100926
往期回顾>>>>>>
【图像压缩】图像处理教程系列之图像压缩【Matlab 074期】
【图像分割】图像处理教程系列之图像分割(一)【Matlab 075期】
【图像分割】图像处理教程系列之图像分割(二)【Matlab 076期】
【模式识别】银行卡号之识别【Matlab 077期】
【模式识别】指纹识别【Matlab 078期】
【图像处理】基于GUI界面之DWT+DCT+PBFO改进图像水印隐藏提取【Matlab 079期】
【图像融合】CBF算法之图像融合【Matlab 080期】
【图像去噪】自适应形态学之图像去噪【Matlab 081期】
【图像增强】DEHAZENET和HWD之水下去散射图像增强【Matlab 082期】
【图像增强】PSO寻优ACE之图像增强【Matlab 083期】
【图像重建】ASTRA算法之图像重建【Matlab 084期】
【图像分割】四叉树之图像分割【Matlab 085期】
【图像分割】心脏中心线之提取【Matlab 086期】
【图像识别】SVM植物叶子之疾病检测和分类【Matlab 087期】
【图像识别】基于GUI界面之模板匹配手写数字识别系统【Matlab 088期】
【图像识别】基于GUI界面之不变矩的数字验证码识别【Matlab 089期】
【图像识别】条形码识别系统【Matlab 090期】
【图像识别】基于GUI界面RGB和BP神经网络之人民币识别系统【Matlab 091期】
【图像识别】CNN卷积神经网络之验证码识别【Matlab 092期】
【图像分类】极限学习分类器之对遥感图像分类【Matlab 093期】
【图像变换】DIBR-3D之图像变换【Matalb 094期】