cap = cv2.VideoCapture("C:/Users/lenovo/Videos/wgs.mp4")#读取文件
#cap = cv2.VideoCapture(0)#读取摄像头
while(True):
ret, frame = cap.read() key = cv2.waitKey(50) & 0xFF
if key == ord('q'):
break
cap.release()
cv2.destroyAllWindows()
这里使用的是椭圆肤色检测模型
在RGB空间里人脸的肤色受亮度影响相当大,所以肤色点很难从非肤色点中分离出来,也就是说在此空间经过处理后,肤色点是离散的点,中间嵌有很多非肤色,这为肤色区域标定(人脸标定、眼睛等)带来了难题。
如果把RGB转为YCrCb空间的话,可以忽略Y(亮度)的影响,因为该空间受亮度影响很小,肤色会产生很好的类聚。这样就把三维的空间将为二维的CrCb,肤色点会形成一定得形状,如:人脸的话会看到一个人脸的区域,手臂的话会看到一条手臂的形态。
def A(img):
YCrCb = cv2.cvtColor(img, cv2.COLOR_BGR2YCR_CB) #转换至YCrCb空间
(y,cr,cb) = cv2.split(YCrCb) #拆分出Y,Cr,Cb值
cr1 = cv2.GaussianBlur(cr, (5,5), 0)
_, skin = cv2.threshold(cr1, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU) #Ostu处理
res = cv2.bitwise_and(img,img, mask = skin)
return res
轮廓处理的话主要用到两个函数,cv2.findContours和cv2.drawContours,这两个函数的使用使用方法很容易搜到就不说了,这部分主要的问题是提取到的轮廓有很多个,但是我们只需要手的轮廓,所以我们要用sorted函数找到最大的轮廓。
def B(img):
#binaryimg = cv2.Canny(Laplacian, 50, 200) #二值化,canny检测
h = cv2.findContours(img,cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_NONE) #寻找轮廓
contour = h[0]
contour = sorted(contour, key = cv2.contourArea, reverse=True)#已轮廓区域面积进行排序
#contourmax = contour[0][:, 0, :]#保留区域面积最大的轮廓点坐标
bg = np.ones(dst.shape, np.uint8) *255#创建白色幕布
ret = cv2.drawContours(bg,contour[0],-1,(0,0,0),3) #绘制黑色轮廓
return ret
'''
@Time : 2021/2/6 15:41
@Author : WGS
@remarks :
'''
""" 从视频读取帧保存为图片"""
import cv2
import numpy as np
# cap = cv2.VideoCapture("C:/Users/lenovo/Videos/wgs.mp4") #读取文件
cap = cv2.VideoCapture(0) # 读取摄像头
# 皮肤检测
def A(img):
YCrCb = cv2.cvtColor(img, cv2.COLOR_BGR2YCR_CB) # 转换至YCrCb空间
(y, cr, cb) = cv2.split(YCrCb) # 拆分出Y,Cr,Cb值
cr1 = cv2.GaussianBlur(cr, (5, 5), 0)
_, skin = cv2.threshold(cr1, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU) # Ostu处理
res = cv2.bitwise_and(img, img, mask=skin)
return res
def B(img):
# binaryimg = cv2.Canny(Laplacian, 50, 200) #二值化,canny检测
h = cv2.findContours(img, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) # 寻找轮廓
contour = h[0]
contour = sorted(contour, key=cv2.contourArea, reverse=True) # 已轮廓区域面积进行排序
# contourmax = contour[0][:, 0, :]#保留区域面积最大的轮廓点坐标
bg = np.ones(dst.shape, np.uint8) * 255 # 创建白色幕布
ret = cv2.drawContours(bg, contour[0], -1, (0, 0, 0), 3) # 绘制黑色轮廓
return ret
while (True):
ret, frame = cap.read()
# 下面三行可以根据自己的电脑进行调节
src = cv2.resize(frame, (400, 350), interpolation=cv2.INTER_CUBIC) # 窗口大小
cv2.rectangle(src, (90, 60), (300, 300), (0, 255, 0)) # 框出截取位置
roi = src[60:300, 90:300] # 获取手势框图
res = A(roi) # 进行肤色检测
cv2.imshow("0", roi)
gray = cv2.cvtColor(res, cv2.COLOR_BGR2GRAY)
dst = cv2.Laplacian(gray, cv2.CV_16S, ksize=3)
Laplacian = cv2.convertScaleAbs(dst)
contour = B(Laplacian) # 轮廓处理
cv2.imshow("2", contour)
key = cv2.waitKey(50) & 0xFF
if key == ord('q'):
break
cap.release()
cv2.destroyAllWindows()