前面说了那么多,推荐系统的冷启动,协同过滤算法,聚类算法,关联规则,混合算法,那现在问题出来了,我用哪种算法来写我自己的公寓出租推荐系统呢?一是凭经验,二,所有算法都测试一遍,看哪个效果好!!!!效果好的标准是什么??就是马上要说的推荐系统的评估,指标。
如何判断推荐系统的好坏
好的推荐系统设计,能够让推荐系统本身收集到高质量的用户反馈,不断完善推荐的质量,增加用户和网站的交互,提高网站的收入。因此在评测一个推荐算法时,需要同时考虑多方的利益,一个好的推荐系统是能够令多方共赢的系统。
推荐系统的评估有2种:在线测评,离线测评。
在线测评
最简单,最直接,最有效,最常用的方法就是ab test(ab测试),不知道就 百度一下 查查。可以通过不断的ab test找出推荐效果最好的算法。效果最好是什么??是根据产品不同而定出的各种衡量指标,打开率,点击率,购买率,复购率,日均打开产品页数,。。。。。不断的提搞这率指标,就OK了。
当然,ab test也有缺点,周期比较长,必须进行长期的实验才能得到可靠的结果。一天?一周?一个月?依你的产品而定,没有决对的对与错。
在线系统其它因素的影响,也很容易影响ab test结果。例如,时间,节假日,突发事件,网速快慢,竞争对手。。。。
在线测评是一项专业,复杂,时间周期长,影响因素多的事,不是技术部,测试部的几个人,拍脑袋就能做并且做好的事。这需要产品,运营,后端,前端,业务多个部门来配合才能做好的事情,注意,这不是危言耸听!!!!!
离线测评
只说TopN推荐,不涉及到评分系统推荐。
有以下几个指标衡量离线测评效果:准确率,召回率,覆盖率,多样性,新颖性,惊喜度,信任度,实时性,健壮性,商业目标。
准确率和召回率
这2个指标经常一起出现,也是最常用来衡量离线测评的。
网站在提供推荐服务时,一般是给用户一个个性化的推荐列表,这种推荐叫做TopN推荐。TopN推荐的预测准确率一般通过准确率(precision)/召回率(recall)度量。令 R(u) 是根据用户在训练集上的行为给用户作出的推荐列表,而 T(u) 是用户在测试集上的行为列表。那么,推荐结果的召回率定义为:
推荐结果的精准率定义为:
很多公司做的推荐系统甚至只用这2个指标来衡量系统的好坏。
覆盖率
覆盖率(coverage)描述一个推荐系统对物品长尾的发掘能力。覆盖率有不同的定义方法,最简单的定义为推荐系统能够推荐出来的物品占总物品集合的比例。假设系统的用户集合为 U,推荐系统给每个用户推荐一个长度为N的物品列表R(u)。那么推荐系统的覆盖率可以通过下面的公式计算:
覆盖率是一个内容提供商会关心的指标。以图书推荐为例,出版社可能会很关心他们的书有没有被推荐给用户。覆盖率为100%的推荐系统可以将每个物品都推荐给至少一个用户。此外,从上面的定义也可以看到,热门排行榜的推荐覆盖率是很低的,它只会推荐那些热门的物品,这些物品在总物品中占的比例很小。一个好的推荐系统不仅需要有比较高的用户满意度,也要有较高的覆盖率。
多样性
为了满足用户广泛的兴趣,推荐列表需要能够覆盖用户不同的兴趣领域,即推荐结果需要具有多样性。尽管用户的兴趣在较长的时间跨度中是一样的,但具体到用户访问推荐系统的某一刻,其兴趣往往是单一的,那么如果推荐列表只能覆盖用户的一个兴趣点,而这个兴趣点不是用户这个时刻的兴趣点,推荐列表就不会让用户满意。反之,如果推荐列表比较多样,覆盖了用户绝大多数的兴趣点,那么就会增加用户找到感兴趣物品的概率。因此给用户的推荐列表也需要满足用户广泛的兴趣,即具有多样性。
多样性描述了推荐列表中物品两两之间的不相似性。因此,多样性和相似性是对应的。假设定义了物品 i 和 j 之间的相似度,那么用户 u 的推荐列表 R(u) 的多样性定义如下:
而推荐系统的整体多样性可以定义为所有用户推荐列表多样性的平均值:
新颖性
新颖的推荐是指给用户推荐那些他们以前没有听说过的物品。在一个网站中实现新颖性的最简单办法是,把那些用户之前在网站中对其有过行为的物品从推荐列表中过滤掉。比如在一个视频网站中,新颖的推荐不应该给用户推荐那些他们已经看过、打过分或者浏览过的视频。但是,有些视频可能是用户在别的网站看过,或者是在电视上看过,因此仅仅过滤掉本网站中用户有过行为的物品还不能完全实现新颖性。
惊喜度
惊喜度(serendipity)是最近这几年推荐系统领域最热门的话题。令用户惊喜的推荐结果是和用户历史上喜欢的物品不相似,但用户却觉得满意的推荐。那么,定义惊喜度需要首先定义推荐结果和用户历史上喜欢的物品的相似度,其次需要定义用户对推荐结果的满意度。
用户满意度只能通过问卷调查或者在线实验获得,而推荐结果和用户历史上喜欢的物品相似度一般可以用内容相似度定义。也就是说,如果获得了一个用户观看电影的历史,得到这些电影的演员和导演集合A,然后给用户推荐一个不属于集合A的导演和演员创作的电影,而用户表示非常满意,这样就实现了一个惊喜度很高的推荐。因此提高推荐惊喜度需要提高推荐结果的用户满意度,同时降低推荐结果和用户历史兴趣的相似度。
信任度
度量推荐系统的信任度只能通过问卷调查的方式,询问用户是否信任推荐系统的推荐结果。提高推荐系统的信任度主要有两种方法:
- 需要增加推荐系统的透明度(transparency),而增加推荐系统透明度的主要办法是提供推荐解释。只有让用户了解推荐系统的运行机制,让用户认同推荐系统的运行机制,才会提高用户对推荐系统的信任度。
- 考虑用户的社交网络信息,利用用户的好友信息给用户做推荐,并且用好友进行推荐解释。这是因为用户对他们的好友一般都比较信任,因此如果推荐的商品是好友购买过的,那么他们对推荐结果就会相对比较信任。
实时性
在很多网站中,因为物品(新闻、微博等)具有很强的时效性,所以需要在物品还具有时效性时就将它们推荐给用户。比如,给用户推荐昨天的新闻显然不如给用户推荐今天的新闻。因此,在这些网站中,推荐系统的实时性就显得至关重要。
推荐系统的实时性包括两个方面:
- 推荐系统需要实时地更新推荐列表来满足用户新的行为变化。比如,当一个用户购买了iPhone,如果推荐系统能够立即给他推荐相关配件,那么肯定比第二天再给用户推荐相关配件更有价值。很多推荐系统都会在离线状态每天计算一次用户推荐列表,然后于在线期间将推荐列表展示给用户。这种设计显然是无法满足实时性的。与用户行为相应的实时性,可以通过推荐列表的变化速率来评测。如果推荐列表在用户有行为后变化不大,或者没有变化,说明推荐系统的实时性不高。
- 推荐系统需要能够将新加入系统的物品推荐给用户。这主要考验了推荐系统处理物品冷启动的能力。对于新物品推荐能力,我们可以利用用户推荐列表中有多大比例的物品是当天新加的来评测。
健壮性
任何一个能带来利益的算法系统都会被人攻击,这方面最典型的例子就是搜索引擎。搜索引擎的作弊和反作弊斗争异常激烈,这是因为如果能让自己的商品成为热门搜索词的第一个搜索果,会带来极大的商业利益。推荐系统目前也遇到了同样的作弊问题,而
健壮性(robust,鲁棒性)
指标衡量了一个推荐系统抗击作弊的能力。
算法健壮性的评测主要利用模拟攻击。首先,给定一个数据集和一个算法,可以用这个算法给这个数据集中的用户生成推荐列表。然后,用常用的攻击方法向数据集中注入噪声数据,然后利用算法在注入噪声后的数据集上再次给用户生成推荐列表。最后,通过比较攻击前后推荐列表的相似度评测算法的健壮性。如果攻击后的推荐列表相对于攻击前没有发生大的变化,就说明算法比较健壮。
在实际系统中,提高系统的健壮性,除了选择健壮性高的算法,还有以下方法:
- 设计推荐系统时尽量使用代价比较高的用户行为。比如,如果有用户购买行为和用户浏览行为,那么主要应该使用用户购买行为,因为购买需要付费,所以攻击购买行为的代价远远大于攻击浏览行为。
- 在使用数据前,进行攻击检测,从而对数据进行清理。
商业目标
很多时候,
网站评测推荐系统更加注重网站的商业目标是否达成
,而商业目标和网站的盈利模式是息息相关的。一般来说,最本质的商业目标就是平均一个用户给公司带来的盈利。不过这种指标不是很难计算,只是计算一次需要比较大的代价。因此,很多公司会根据自己的盈利模式设计不同的商业目标。
不同的网站具有不同的商业目标。比如电子商务网站的目标可能是销售额,基于展示广告盈利的网站其商业目标可能是广告展示总数,基于点击广告盈利的网站其商业目标可能是广告点击总数。因此,设计推荐系统时需要考虑最终的商业目标,而网站使用推荐系统的目的除了满足用户发现内容的需求,也需要利用推荐系统加快实现商业上的指标。
准确率,召回率是衡量推荐系统最普遍的指标,覆盖率和多样性次之。
新颖性和惊喜度是近几年大家都在研究追逐的目标。
信任度要看推荐系统的产品具体是什么,实时性在新闻,咨询类推荐系统中用的比较多。
健壮性是一个魔高一尺,道高一丈的问题,例如,百度排名,淘宝搜索排名。
商业目标是所有推荐系统的终极目标,必须明确。