- 深度学习的前沿与挑战:从基础到最新进展
Jason_Orton
深度学习人工智能数据挖掘机器学习
目录引言什么是深度学习?深度学习的工作原理深度学习的关键技术1.卷积神经网络(CNN)2.循环神经网络(RNN)3.生成对抗网络(GAN)4.变分自编码器(VAE)5.自注意力机制与Transformer深度学习的应用1.计算机视觉2.自然语言处理(NLP)3.语音识别与合成4.推荐系统5.医学影像分析深度学习面临的挑战结语引言深度学习(DeepLearning)近年来成为人工智能领域的核心技术之
- 第十三站:卷积神经网络(CNN)的优化
武狐肆骸
机器学习cnn人工智能神经网络
前言:在上一期我们构建了基本的卷积神经网络之后,接下来我们将学习一些提升网络性能的技巧和方法。这些优化技术包括数据增强、网络架构的改进、正则化技术。1.数据增强(DataAugmentation)数据增强是提升深度学习模型泛化能力的一种常见手段。通过对训练数据进行各种随机变换,可以生成更多的训练样本,帮助模型避免过拟合。常见的数据增强方法:旋转(Rotation):随机旋转图像,增强模型对旋转变换
- C / C++ 左移 右移 剖析
佛道教主
C/C++语言本身
C/C++左移(>)剖析例子1:chara=0xF0;intb=(int)a;intc=0xFFFFFFFF;intd=c>1;printf("%d\n",b);printf("%d\n",d);printf("%d\n",c);printf("%d\n",e);getchar();例子2:chara=0xF0;charb=a>>2;printf("%d\n",a);printf("%d\n",b
- Metasploit Framework(MSF)全面使用手册
阿贾克斯的黎明
网络安全网络安全
目录MetasploitFramework(MSF)全面使用手册引言一、安装MetasploitFramework1.1在KaliLinux上安装1.2在其他Linux系统上安装1.3在Windows上安装二、启动MetasploitFramework三、基本操作3.1查看帮助信息3.2搜索模块3.3使用模块3.4查看模块选项3.5设置模块选项3.6执行模块四、常见模块类型及使用示例4.1漏洞利用
- 调用 requestFullscreen 使网页进入全屏
一只月月鸟呀
#HTML5javascript前端开发语言
Element.requestFullscreen调用此方法并不能保证元素一定能够进入全屏模式。如果元素被允许进入全屏幕模式,返回的Promise会兑现,并且该元素会收到一个fullscreenchange事件,通知它已经进入全屏模式。如果全屏请求被拒绝,返回的promise会被拒绝并且该元素会收到一个fullscreenerror事件。如果该元素已经从原来的文档中分离,那么该文档将会收到这些事件
- flutter: table calendar笔记
蜉蝣之翼❉
flutter笔记
pubdev:table_calendar3.2.0我来详细解释TableCalendar是如何根据不同的CalendarFormat来显示界面的。主要逻辑在CalendarCore中实现。核心逻辑分为以下几个部分:页面数量计算-_getPageCount方法根据不同格式计算总页数:int_getPageCount(CalendarFormatformat,DateTimefirst,DateTi
- 踩坑-vue3.0-uniapp-全局变量prototype失效
cometxd
原型模式javascript前端
项目场景:踩坑-vue3.0-uniapp-全局变量prototype失效问题描述踩坑-vue3.0-uniapp-全局变量prototype失效main.js中全局变量失效Vue.prototype.$testname="testNAME";解决方案:使用exportfunctioncreateApp(){constapp=createSSRApp(App)app
- Python库Numpy学习+代码实例
海绵宝宝
pythonnumpy学习机器学习
前言Numpy是python语言的一个扩充程序库,支持高端大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库,现已成为机器学习的必备模块。本文章对Numpy库的原文档进行了学习,可作为文档阅读理解来进行阅读。附原文档链接如下:Numpy库文档库的介绍该库中的对象为多维数组,原名为ndarray,因此经常被叫做array。python中也有一个库叫做array,但是与这里的ndarra
- # C/C++右移高位补0还是1?
开源519
c语言c++java开发语言
C/C++右移高位补0还是1?[TOC]场景列举问题 先抛出代码,如下输出的结果应该是什么?intmain(){int16_tval1=0xF000;int16_tval2=0x7700;int16_tval3=val1>>8|val2;printf("val3=%x",val3);return0;}输出 执行输出,正确结果如下,是否符合你的预期呢?val3=fffffff0分析 有经验的程序员一
- Python Cookbook-2.12 将二进制数据发送到 Windows 的标准输出
我不会编程555
#Python学习windowspython开发语言笔记
任务在Windows平台上,你想把二进制数据(比如一张图片)发送到stdout中。解决方案Python标准库中,依赖特定平台(Windows)的模块msvcrt提供了setmode函数,可用来完成这个任务:importsysifsys,platform=="win32":importos,msvcrtmsvcrt,setmode(sys.stdout.fileno(),os.O_BINARY)现在
- 深度学习:从神经网络到智能应用
Jason_Orton
深度学习神经网络人工智能机器学习
目录引言一.什么是深度学习?二.深度学习的基本原理1.神经网络的组成2.激活函数3.反向传播(Backpropagation)三.深度学习的常见模型四.深度学习的应用场景五.深度学习的挑战与未来结语引言深度学习(DeepLearning)作为机器学习的一个分支,近年来在人工智能领域取得了革命性的进展。无论是语音识别、图像识别,还是自动驾驶、自然语言处理,深度学习都在推动着技术的发展和行业的变革。那
- 学习Flask:Day 1:基础搭建
昨今
学习flaskpython
学习目标:完成第一个Flask应用#app.pyfromflaskimportFlaskapp=Flask(__name__)@app.route('/')defhome():return'HelloFlask!'@app.route('/api/greet/')defgreet(name):return{'message':f'Hello{name}!'}if__name__=='__main_
- c语言 printf 颜色,关于printf如何输出颜色
XY LIU
c语言printf颜色
该楼层疑似违规已被系统折叠隐藏此楼查看此楼只靠签到升级太慢了,第二次发帖。。。之前一直不知道咋用printf输出颜色,找了度娘就知道了。。大一快结束了,c语言也学了半学期了,要走的路还很长啊。。。这是给和我一样的新手看的,大神们一笑而过就好。。。进入正题:cdroid是在安卓平台运行的,所以是linux下,可以这样输出颜色://小范例#includeintmain(){printf("\033[3
- 基于 YOLO 进行车道线检测与目标检测算法研究及开发的一般步骤
pk_xz123456
python算法深度学习YOLO目标检测算法
基于深度学习的车道线检测与目标检测在自动驾驶等领域有着重要应用,使用YOLO(YouOnlyLookOnce)进行开发是一种常见且高效的方式。以下是关于基于YOLO进行车道线检测与目标检测算法研究及开发的一般步骤和相关内容:1.环境搭建首先确保你的开发环境安装了必要的软件和库,推荐使用Python语言,以下是一些关键库:PyTorch:YOLO通常基于PyTorch实现,安装适合你系统的PyTor
- YOLO11的单独推理程序
AIOT魔法师
YOLOv5和YOLOv11python开发语言
YOLO11的单独推理程序,可以实例化加载一次多次推理。YOLO11的单独推理程序,可以实例化加载一次多次推理。YOLO11的单独推理程序,可以实例化加载一次多次推理。YOLO11的单独推理程序,可以实例化加载一次多次推理。YOLO11的单独推理程序,可以实例化加载一次多次推理。YOLO11的单独推理程序,可以实例化加载一次多次推理。importcv2importnumpyasnpimportra
- YOLOv8、v9、v10、v11-Ultralytics框架加入C2f_Repghost
AIOT魔法师
YOLOv5和YOLOv11YOLO
1、创建一个RepGhost.py:importcopyimportnumpyasnpimporttorchimporttorch.nnasnnimporttorch.nn.functionalasFdef_make_divisible(v,div
- 理解CPU与GPU频繁数据传输
_DCG_
计算机视觉深度学习神经网络CPUGPU数据传输
基础理解在学习深度学习神经网络过程中,有时候会遇到一些描述“尽量避免CPU与GPU频繁数据传输”。那这句话应该如何理解呢?我们知道CPU可以访问内存,而GPU也有自己的显存。要完成功能一般都是CPU从硬盘或者其他数据源读取数据到内存中,然后将内存中的传输到GPU的显存中,GPU从显存中获取数据并进行计算,并最终将计算的结果返回给CPU的内存中。整体的计算就像上面描述,但是不可忽略的是:从CPU内存
- 深度学习批次数据处理的理解
_DCG_
计算机视觉深度学习人工智能
基础介绍在计算机视觉深度学习网络中,在训练阶段数据输入通常是一个批次,即不是一次输入单张图片,而是一次性输入多张图片,而神经网络的结构内部一次只能处理一张图片,这时候很自然就会考虑为什么要这样的输入?神经网络是如何处理多个数据的,下面从硬件架构的角度去分析处理。GPU硬件架构GPU的硬件架构设计是批处理能够高效运行的关键原因之一。GPU现阶段一般采用SIMT架构,它的特点如下:SIMT(Singl
- 安装CUDA以及GPU版本的pytorch
lskkkkkkkkkkkk
Pythonpytorch人工智能python
使用pytorch进行深度学习的时候,往往想用GPU进行运算来提高速度。于是搜索便知道了CUDA。下面给出一个自检的建议:检查cuda的版本是否适配自己的GPU。打开NVDIA控制面板,点击左下角“系统信息”,然后就可以看到NVDIAGPU的详细信息,其中就包含了CUDA的版本。在官网安装合适版本的cuda-toolkit。安装了cuda,但是命令行输入nvcc-V报错显示没有nvcc这时候可能没
- buuctf-变异凯撒
qis_qis
crypto其他
凯撒密码作为最古老的密码体制之一,相信大多数人都知道,即简单的移位操作,那么问题来了,变异的凯撒密码又会是什么呢?拿到题先比对acsii码值对比表:acsii码通过上面的acsii码值对比表可以看到第一个字符向后移了5,第二个向后移了6,第三个向后移了7,以此类推,很容易想到变异凯撒即每个向后移的位数是前一个加1:str="afZ_r9VYfScOeO_UL^RWUc"k=5foriinstr:p
- buuctf-Quoted-printable
qis_qis
crypto
解压打开:=E9=82=A3=E4=BD=A0=E4=B9=9F=E5=BE=88=E6=A3=92=E5=93=A6刚开始看到这一个字符串,误以为是什么编码特有的格式直到后面发现标题即提示,即Quoted-printable也是一种编码:得到flag:那你也很棒哦
- 使用Node.js实现RESTful API
chiwan3432
json开发工具ruby
RESTful基础概念REST(RepresentationalStateTransfer)描述了一个架构样式的网络系统,它首次出现在2000年RoyFielding的博士论文中。在REST服务中,应用程序状态和功能可以分为各种资源。资源向客户端公开,客户端可以对资源进行增删改操作。资源的例子有:应用程序对象、数据库记录、算法等等。REST通过抽象资源,提供了一个非常容易理解和使用的API,它使用
- 自定义的搭建solidity开发环境(以太坊)
yinzhiqing
开发环境技术文档ubuntu开发环境
环境地址github:GitHub-yinzhiqing/templete-sol:solidityplatform(hardhat)gitlab:zqy/templete-sol·GitLab本项目利用openzapplinsolcweb3jshardhatnodejs在ubuntu下搭建solidity合约开发环境.大多数功能实现了自动化(脚本)执行.特点:1.开发环境可充分使用2.合约可升级
- 技术硬核:突出FP8、3倍速度、90%成本暴降等技术参数,强化可信度
guzhoumingyue
AIpython
DeepSeek近期开源项目详细分析1.FlashMLA:大模型推理效率革命技术特点:首个开源项目FlashMLA是针对英伟达Hopper架构GPU(如H800)优化的高效多头潜在注意力(MLA)解码内核,支持可变长度序列的动态处理,显著降低显存占用并提升推理速度。在H800上可实现每秒3000GB的数据吞吐和580万亿次浮点运算(TFLOPS),接近硬件性能极限。行业影响:通过压缩KV矩阵和优化
- 读论文:Generation of 3D molecules in pockets via a language model (Lingo3Dmol)
LastWhisperw
语言模型人工智能自然语言处理
基于线性序列(例如SMILES)或图表示的的分子生成模型已经吸引了基于结构的药物设计领域的广泛关注,但这些模型在捕获3维空间交互时还不够强,也因此经常生成我们不希望产生的分子结构。为了解决这些问题,我们提出Lingo3DMol,一个基于口袋的3维分子生成方案,将语言模型和几何深度学习技术结合起来。为了帮助模型学习分子拓扑学和原子的空间位置,我们还提出一个新的分子表示方法,基于片段的简化分子xxxx
- 拐角IV c++
Functionhkjhgvc
c++算法开发语言
题目描述:输入整数N,输出相应方阵。输入:一个整数N。(0usingnamespacestd;#defineN1005intx[N];intmain(){intn;cin>>n;for(inti=1;i<=n;i++){for(intj=1;j<=n;j++)printf("%3d",max(i,j));printf("\n");}return0;}
- 点云配准技术的演进与前沿探索:从传统算法到深度学习融合(1)
点云SLAM
点云数据处理技术算法深度学习点云数据处理点云配准刚体变换
1、点云配准的基础理论1.1点云数据的特性与获取点云数据是一种通过大量离散的三维坐标点来精确表示物体或场景表面几何形状和空间位置关系的数字化信息表达方式。在实际应用中,点云数据展现出诸多独特的特性。从表达形式来看,点云数据能够直观地呈现出物体或场景的三维结构,每个点都包含了其在空间中的X、Y、Z坐标信息,这使得点云数据可以精确地描述物体表面的形状和位置。例如,在对古建筑进行三维建模时,通过点云数据
- 手把手教你如何使用java开发人脸识别及人脸比对(附源码)
java人脸识别后端深度学习
痛点目前,常用的人脸识别算法大多基于Python开发,因为Python对深度学习框架的支持较好,且许多优秀的人脸识别算法都是在深度学习框架下实现的。然而,对于Java开发者来说,这种情况并不十分友好。传统上,Java开发的人脸识别算法主要依赖OpenCV,但与基于深度学习的算法相比,OpenCV的精度相对较低。此外,若Java开发者希望使用Python实现的算法,还需要安装Python环境,并且熟
- 书籍-《在AWS上构建可扩展的深度学习Pipeline》
深度学习机器学习人工智能
书籍:BuildingScalableDeepLearningPipelinesonAWS:Develop,Train,andDeployDeepLearningModels作者:AbdelazizTestas出版:Apress编辑:陈萍萍的公主@一点人工一点智能下载:书籍下载-《在AWS上构建可扩展的深度学习Pipeline》01书籍介绍本书是您在亚马逊网络服务(AWS)上创建强大且端到端深度学
- 深入探索C语言中的sscanf和sprintf函数
共享家9527
cc语言
在C语言的世界里,数据的格式化输入输出是一项基础且重要的操作。sscanf和sprintf这两个函数,为我们处理字符串和其他数据类型之间的转换提供了极大的便利。今天,就让我们一起深入了解这两个函数。一、sprintf函数sprintf函数的功能是把格式化的数据写入某个字符串中,也就是“字符串格式化”。它的函数原型如下:#includeintsprintf(char*str,constchar*fo
- [黑洞与暗粒子]没有光的世界
comsci
无论是相对论还是其它现代物理学,都显然有个缺陷,那就是必须有光才能够计算
但是,我相信,在我们的世界和宇宙平面中,肯定存在没有光的世界....
那么,在没有光的世界,光子和其它粒子的规律无法被应用和考察,那么以光速为核心的
&nbs
- jQuery Lazy Load 图片延迟加载
aijuans
jquery
基于 jQuery 的图片延迟加载插件,在用户滚动页面到图片之后才进行加载。
对于有较多的图片的网页,使用图片延迟加载,能有效的提高页面加载速度。
版本:
jQuery v1.4.4+
jQuery Lazy Load v1.7.2
注意事项:
需要真正实现图片延迟加载,必须将真实图片地址写在 data-original 属性中。若 src
- 使用Jodd的优点
Kai_Ge
jodd
1. 简化和统一 controller ,抛弃 extends SimpleFormController ,统一使用 implements Controller 的方式。
2. 简化 JSP 页面的 bind, 不需要一个字段一个字段的绑定。
3. 对 bean 没有任何要求,可以使用任意的 bean 做为 formBean。
使用方法简介
- jpa Query转hibernate Query
120153216
Hibernate
public List<Map> getMapList(String hql,
Map map) {
org.hibernate.Query jpaQuery = entityManager.createQuery(hql);
if (null != map) {
for (String parameter : map.keySet()) {
jp
- Django_Python3添加MySQL/MariaDB支持
2002wmj
mariaDB
现状
首先,
[email protected] 中默认的引擎为 django.db.backends.mysql 。但是在Python3中如果这样写的话,会发现 django.db.backends.mysql 依赖 MySQLdb[5] ,而 MySQLdb 又不兼容 Python3 于是要找一种新的方式来继续使用MySQL。 MySQL官方的方案
首先据MySQL文档[3]说,自从MySQL
- 在SQLSERVER中查找消耗IO最多的SQL
357029540
SQL Server
返回做IO数目最多的50条语句以及它们的执行计划。
select top 50
(total_logical_reads/execution_count) as avg_logical_reads,
(total_logical_writes/execution_count) as avg_logical_writes,
(tot
- spring UnChecked 异常 官方定义!
7454103
spring
如果你接触过spring的 事物管理!那么你必须明白 spring的 非捕获异常! 即 unchecked 异常! 因为 spring 默认这类异常事物自动回滚!!
public static boolean isCheckedException(Throwable ex)
{
return !(ex instanceof RuntimeExcep
- mongoDB 入门指南、示例
adminjun
javamongodb操作
一、准备工作
1、 下载mongoDB
下载地址:http://www.mongodb.org/downloads
选择合适你的版本
相关文档:http://www.mongodb.org/display/DOCS/Tutorial
2、 安装mongoDB
A、 不解压模式:
将下载下来的mongoDB-xxx.zip打开,找到bin目录,运行mongod.exe就可以启动服务,默
- CUDA 5 Release Candidate Now Available
aijuans
CUDA
The CUDA 5 Release Candidate is now available at http://developer.nvidia.com/<wbr></wbr>cuda/cuda-pre-production. Now applicable to a broader set of algorithms, CUDA 5 has advanced fe
- Essential Studio for WinRT网格控件测评
Axiba
JavaScripthtml5
Essential Studio for WinRT界面控件包含了商业平板应用程序开发中所需的所有控件,如市场上运行速度最快的grid 和chart、地图、RDL报表查看器、丰富的文本查看器及图表等等。同时,该控件还包含了一组独特的库,用于从WinRT应用程序中生成Excel、Word以及PDF格式的文件。此文将对其另外一个强大的控件——网格控件进行专门的测评详述。
网格控件功能
1、
- java 获取windows系统安装的证书或证书链
bewithme
windows
有时需要获取windows系统安装的证书或证书链,比如说你要通过证书来创建java的密钥库 。
有关证书链的解释可以查看此处 。
public static void main(String[] args) {
SunMSCAPI providerMSCAPI = new SunMSCAPI();
S
- NoSQL数据库之Redis数据库管理(set类型和zset类型)
bijian1013
redis数据库NoSQL
4.sets类型
Set是集合,它是string类型的无序集合。set是通过hash table实现的,添加、删除和查找的复杂度都是O(1)。对集合我们可以取并集、交集、差集。通过这些操作我们可以实现sns中的好友推荐和blog的tag功能。
sadd:向名称为key的set中添加元
- 异常捕获何时用Exception,何时用Throwable
bingyingao
用Exception的情况
try {
//可能发生空指针、数组溢出等异常
} catch (Exception e) {
 
- 【Kafka四】Kakfa伪分布式安装
bit1129
kafka
在http://bit1129.iteye.com/blog/2174791一文中,实现了单Kafka服务器的安装,在Kafka中,每个Kafka服务器称为一个broker。本文简单介绍下,在单机环境下Kafka的伪分布式安装和测试验证 1. 安装步骤
Kafka伪分布式安装的思路跟Zookeeper的伪分布式安装思路完全一样,不过比Zookeeper稍微简单些(不
- Project Euler
bookjovi
haskell
Project Euler是个数学问题求解网站,网站设计的很有意思,有很多problem,在未提交正确答案前不能查看problem的overview,也不能查看关于problem的discussion thread,只能看到现在problem已经被多少人解决了,人数越多往往代表问题越容易。
看看problem 1吧:
Add all the natural num
- Java-Collections Framework学习与总结-ArrayDeque
BrokenDreams
Collections
表、栈和队列是三种基本的数据结构,前面总结的ArrayList和LinkedList可以作为任意一种数据结构来使用,当然由于实现方式的不同,操作的效率也会不同。
这篇要看一下java.util.ArrayDeque。从命名上看
- 读《研磨设计模式》-代码笔记-装饰模式-Decorator
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.io.BufferedOutputStream;
import java.io.DataOutputStream;
import java.io.FileOutputStream;
import java.io.Fi
- Maven学习(一)
chenyu19891124
Maven私服
学习一门技术和工具总得花费一段时间,5月底6月初自己学习了一些工具,maven+Hudson+nexus的搭建,对于maven以前只是听说,顺便再自己的电脑上搭建了一个maven环境,但是完全不了解maven这一强大的构建工具,还有ant也是一个构建工具,但ant就没有maven那么的简单方便,其实简单点说maven是一个运用命令行就能完成构建,测试,打包,发布一系列功
- [原创]JWFD工作流引擎设计----节点匹配搜索算法(用于初步解决条件异步汇聚问题) 补充
comsci
算法工作PHP搜索引擎嵌入式
本文主要介绍在JWFD工作流引擎设计中遇到的一个实际问题的解决方案,请参考我的博文"带条件选择的并行汇聚路由问题"中图例A2描述的情况(http://comsci.iteye.com/blog/339756),我现在把我对图例A2的一个解决方案公布出来,请大家多指点
节点匹配搜索算法(用于解决标准对称流程图条件汇聚点运行控制参数的算法)
需要解决的问题:已知分支
- Linux中用shell获取昨天、明天或多天前的日期
daizj
linuxshell上几年昨天获取上几个月
在Linux中可以通过date命令获取昨天、明天、上个月、下个月、上一年和下一年
# 获取昨天
date -d 'yesterday' # 或 date -d 'last day'
# 获取明天
date -d 'tomorrow' # 或 date -d 'next day'
# 获取上个月
date -d 'last month'
#
- 我所理解的云计算
dongwei_6688
云计算
在刚开始接触到一个概念时,人们往往都会去探寻这个概念的含义,以达到对其有一个感性的认知,在Wikipedia上关于“云计算”是这么定义的,它说:
Cloud computing is a phrase used to describe a variety of computing co
- YII CMenu配置
dcj3sjt126com
yii
Adding id and class names to CMenu
We use the id and htmlOptions to accomplish this. Watch.
//in your view
$this->widget('zii.widgets.CMenu', array(
'id'=>'myMenu',
'items'=>$this-&g
- 设计模式之静态代理与动态代理
come_for_dream
设计模式
静态代理与动态代理
代理模式是java开发中用到的相对比较多的设计模式,其中的思想就是主业务和相关业务分离。所谓的代理设计就是指由一个代理主题来操作真实主题,真实主题执行具体的业务操作,而代理主题负责其他相关业务的处理。比如我们在进行删除操作的时候需要检验一下用户是否登陆,我们可以删除看成主业务,而把检验用户是否登陆看成其相关业务
- 【转】理解Javascript 系列
gcc2ge
JavaScript
理解Javascript_13_执行模型详解
摘要: 在《理解Javascript_12_执行模型浅析》一文中,我们初步的了解了执行上下文与作用域的概念,那么这一篇将深入分析执行上下文的构建过程,了解执行上下文、函数对象、作用域三者之间的关系。函数执行环境简单的代码:当调用say方法时,第一步是创建其执行环境,在创建执行环境的过程中,会按照定义的先后顺序完成一系列操作:1.首先会创建一个
- Subsets II
hcx2013
set
Given a collection of integers that might contain duplicates, nums, return all possible subsets.
Note:
Elements in a subset must be in non-descending order.
The solution set must not conta
- Spring4.1新特性——Spring缓存框架增强
jinnianshilongnian
spring4
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- shell嵌套expect执行命令
liyonghui160com
一直都想把expect的操作写到bash脚本里,这样就不用我再写两个脚本来执行了,搞了一下午终于有点小成就,给大家看看吧.
系统:centos 5.x
1.先安装expect
yum -y install expect
2.脚本内容:
cat auto_svn.sh
#!/bin/bash
- Linux实用命令整理
pda158
linux
0. 基本命令 linux 基本命令整理
1. 压缩 解压 tar -zcvf a.tar.gz a #把a压缩成a.tar.gz tar -zxvf a.tar.gz #把a.tar.gz解压成a
2. vim小结 2.1 vim替换 :m,ns/word_1/word_2/gc  
- 独立开发人员通向成功的29个小贴士
shoothao
独立开发
概述:本文收集了关于独立开发人员通向成功需要注意的一些东西,对于具体的每个贴士的注解有兴趣的朋友可以查看下面标注的原文地址。
明白你从事独立开发的原因和目的。
保持坚持制定计划的好习惯。
万事开头难,第一份订单是关键。
培养多元化业务技能。
提供卓越的服务和品质。
谨小慎微。
营销是必备技能。
学会组织,有条理的工作才是最有效率的。
“独立
- JAVA中堆栈和内存分配原理
uule
java
1、栈、堆
1.寄存器:最快的存储区, 由编译器根据需求进行分配,我们在程序中无法控制.2. 栈:存放基本类型的变量数据和对象的引用,但对象本身不存放在栈中,而是存放在堆(new 出来的对象)或者常量池中(字符串常量对象存放在常量池中。)3. 堆:存放所有new出来的对象。4. 静态域:存放静态成员(static定义的)5. 常量池:存放字符串常量和基本类型常量(public static f