解 不妨设曲线 { x = a ( t − sin t ) y = a ( 1 − cos t ) \begin{cases}x=a(t-\sin t)\\y=a(1-\cos t)\end{cases} { x=a(t−sint)y=a(1−cost)的直角坐标方程为 y = y ( x ) y=y(x) y=y(x),则
∬ D y 2 d σ = ∫ 0 2 π a d x ∫ 0 y ( x ) y 2 d y = 1 3 ∫ 0 2 π a y 3 ( x ) d x = 1 3 ∫ 0 2 π a 3 ( 1 − cos t ) 3 a ( 1 − cos t ) d t = 16 a 4 3 ∫ 0 2 π sin 8 t 2 d t = t 2 = u 32 a 4 3 ∫ 0 π sin 8 u d u = 64 a 4 3 ∫ 0 π 2 sin 8 u d u = 64 a 4 3 ⋅ 7 8 ⋅ 5 6 ⋅ 3 4 ⋅ 1 2 ⋅ π 2 = 35 12 π a 4 . \begin{aligned} \displaystyle\iint\limits_{D}y^2\mathrm{d}\sigma&=\displaystyle\int^{2\pi a}_0\mathrm{d}x\displaystyle\int^{y(x)}_0y^2\mathrm{d}y=\cfrac{1}{3}\displaystyle\int^{2\pi a}_0y^3(x)\mathrm{d}x\\ &=\cfrac{1}{3}\displaystyle\int^{2\pi}_0a^3(1-\cos t)^3a(1-\cos t)\mathrm{d}t\\ &=\cfrac{16a^4}{3}\displaystyle\int^{2\pi}_0\sin^8\cfrac{t}{2}\mathrm{d}t\xlongequal{\frac{t}{2}=u}\cfrac{32a^4}{3}\displaystyle\int^{\pi}_0\sin^8u\mathrm{d}u\\ &=\cfrac{64a^4}{3}\displaystyle\int^{\frac{\pi}{2}}_0\sin^8u\mathrm{d}u=\cfrac{64a^4}{3}\cdot\cfrac{7}{8}\cdot\cfrac{5}{6}\cdot\cfrac{3}{4}\cdot\cfrac{1}{2}\cdot\cfrac{\pi}{2}=\cfrac{35}{12}\pi a^4. \end{aligned} D∬y2dσ=∫02πadx∫0y(x)y2dy=31∫02πay3(x)dx=31∫02πa3(1−cost)3a(1−cost)dt=316a4∫02πsin82tdt2t=u332a4∫0πsin8udu=364a4∫02πsin8udu=364a4⋅87⋅65⋅43⋅21⋅2π=1235πa4.
(这道题主要利用了参数方程解积分求解)
解 令 x 2 + y 2 − 2 y = 0 x^2+y^2-2y=0 x2+y2−2y=0,即 x 2 + y 2 = 2 y x^2+y^2=2y x2+y2=2y,该曲线就将原积分域划为两部分,如下图,其中红色部分为 D 1 D_1 D1,橙色部分为 D 2 D_2 D2。在 D 1 D_1 D1上 x 2 + y 2 − 2 y x^2+y^2-2y x2+y2−2y为负,在 D 2 D_2 D2上 x 2 + y 2 − 2 y x^2+y^2-2y x2+y2−2y为正,则
∬ D ∣ x 2 + y 2 − 2 y ∣ d σ = ∬ D 1 ∣ x 2 + y 2 − 2 y ∣ d σ + ∬ D 2 ∣ x 2 + y 2 − 2 y ∣ d σ = ∬ D 1 ( 2 y − x 2 − y 2 ) d σ + ∬ D 2 ( x 2 + y 2 − 2 y ) d σ = ∬ D 1 ( 2 y − x 2 − y 2 ) d σ + ( ∬ D ( x 2 + y 2 − 2 y ) d σ − ∬ D 1 ( x 2 + y 2 − 2 y ) d σ ) = ∬ D ( x 2 + y 2 − 2 y ) d σ + 2 ∬ D 1 ( 2 y − x 2 − y 2 ) d σ = ∫ 0 2 π d θ ∫ 0 2 ρ 3 d ρ + 2 ∫ 0 π d θ ∫ 0 2 sin θ ( 2 ρ sin θ − ρ 2 ) ρ d ρ = 9 π . \begin{aligned} &\displaystyle\iint\limits_{D}|x^2+y^2-2y|\mathrm{d}\sigma\\ =&\displaystyle\iint\limits_{D_1}|x^2+y^2-2y|\mathrm{d}\sigma+\displaystyle\iint\limits_{D_2}|x^2+y^2-2y|\mathrm{d}\sigma\\ =&\displaystyle\iint\limits_{D_1}(2y-x^2-y^2)\mathrm{d}\sigma+\displaystyle\iint\limits_{D_2}(x^2+y^2-2y)\mathrm{d}\sigma\\ =&\displaystyle\iint\limits_{D_1}(2y-x^2-y^2)\mathrm{d}\sigma+\left(\displaystyle\iint\limits_{D}(x^2+y^2-2y)\mathrm{d}\sigma-\displaystyle\iint\limits_{D_1}(x^2+y^2-2y)\mathrm{d}\sigma\right)\\ =&\displaystyle\iint\limits_{D}(x^2+y^2-2y)\mathrm{d}\sigma+2\displaystyle\iint\limits_{D_1}(2y-x^2-y^2)\mathrm{d}\sigma\\ =&\displaystyle\int^{2\pi}_0\mathrm{d}\theta\displaystyle\int^2_0\rho^3\mathrm{d}\rho+2\displaystyle\int^{\pi}_0\mathrm{d}\theta\displaystyle\int^{2\sin\theta}_0(2\rho\sin\theta-\rho^2)\rho\mathrm{d}\rho=9\pi. \end{aligned} =====D∬∣x2+y2−2y∣dσD1∬∣x2+y2−2y∣dσ+D2∬∣x2+y2−2y∣dσD1∬(2y−x2−y2)dσ+D2∬(x2+y2−2y)dσD1∬(2y−x2−y2)dσ+⎝⎛D∬(x2+y2−2y)dσ−D1∬(x2+y2−2y)dσ⎠⎞D∬(x2+y2−2y)dσ+2D1∬(2y−x2−y2)dσ∫02πdθ∫02ρ3dρ+2∫0πdθ∫02sinθ(2ρsinθ−ρ2)ρdρ=9π.
(这道题主要利用了分类积分求解)
解 将全平面用直线 y = x y=x y=x划分为两部分,直线 y = x y=x y=x以上的部分记为 D 1 D_1 D1,以下部分记为 D 2 D_2 D2。如下图。
∬ D min { x , y } e − ( x 2 + y 2 ) d σ = ∬ D 1 x e − ( x 2 + y 2 ) d σ + ∬ D 2 y e − ( x 2 + y 2 ) d σ = ∫ − ∞ + ∞ d y ∫ − ∞ y x e − x 2 ⋅ e − y 2 d x + ∫ − ∞ + ∞ d x ∫ − ∞ x y e − y 2 ⋅ e − x 2 d x = − 1 2 ∫ − ∞ + ∞ e − 2 y 2 d y − 1 2 ∫ − ∞ + ∞ e − 2 x 2 d x = − ∫ − ∞ + ∞ e − 2 x 2 d x = 2 x = t − 1 2 ∫ − ∞ + ∞ e − t 2 d t = − 1 2 π = − π 2 . \begin{aligned} &\displaystyle\iint\limits_{D}\min\{x,y\}e^{-(x^2+y^2)}\mathrm{d}\sigma\\ &=\displaystyle\iint\limits_{D_1}xe^{-(x^2+y^2)}\mathrm{d}\sigma+\displaystyle\iint\limits_{D_2}ye^{-(x^2+y^2)}\mathrm{d}\sigma\\ &=\displaystyle\int^{+\infty}_{-\infty}\mathrm{d}y\displaystyle\int^y_{-\infty}xe^{-x^2}\cdot e^{-y^2}\mathrm{d}x+\displaystyle\int^{+\infty}_{-\infty}\mathrm{d}x\displaystyle\int^x_{-\infty}ye^{-y^2}\cdot e^{-x^2}\mathrm{d}x\\ &=-\cfrac{1}{2}\displaystyle\int^{+\infty}_{-\infty}e^{-2y^2}\mathrm{d}y-\cfrac{1}{2}\displaystyle\int^{+\infty}_{-\infty}e^{-2x^2}\mathrm{d}x=-\displaystyle\int^{+\infty}_{-\infty}e^{-2x^2}\mathrm{d}x\\ &\xlongequal{\sqrt{2}x=t}-\cfrac{1}{\sqrt{2}}\displaystyle\int^{+\infty}_{-\infty}e^{-t^2}\mathrm{d}t=-\cfrac{1}{\sqrt{2}}\sqrt{\pi}=-\sqrt{\cfrac{\pi}{2}}. \end{aligned} D∬min{ x,y}e−(x2+y2)dσ=D1∬xe−(x2+y2)dσ+D2∬ye−(x2+y2)dσ=∫−∞+∞dy∫−∞yxe−x2⋅e−y2dx+∫−∞+∞dx∫−∞xye−y2⋅e−x2dx=−21∫−∞+∞e−2y2dy−21∫−∞+∞e−2x2dx=−∫−∞+∞e−2x2dx2x=t−21∫−∞+∞e−t2dt=−21π=−2π.
(这道题主要利用了分类积分求解)
解 由于积分域 D D D关于直线 y = x y=x y=x对称,则
∬ D x sin ( π x 2 + y 2 ) x + y d x d y = ∬ D y sin ( π x 2 + y 2 ) x + y d x d y = 1 2 [ ∬ D x sin ( π x 2 + y 2 ) x + y d x d y + ∬ D y sin ( π x 2 + y 2 ) x + y d x d y ] = 1 2 ∬ D sin ( π x 2 + y 2 ) d x d y = 1 2 ∫ 0 π 2 d θ ∫ 1 2 sin ( π r ) d r = − 1 4 ∫ 1 2 r d ( π r ) = − 3 4 . \begin{aligned} &\displaystyle\iint\limits_{D}\cfrac{x\sin(\pi\sqrt{x^2+y^2})}{x+y}\mathrm{d}x\mathrm{d}y\\ =&\displaystyle\iint\limits_{D}\cfrac{y\sin(\pi\sqrt{x^2+y^2})}{x+y}\mathrm{d}x\mathrm{d}y\\ =&\cfrac{1}{2}\left[\displaystyle\iint\limits_{D}\cfrac{x\sin(\pi\sqrt{x^2+y^2})}{x+y}\mathrm{d}x\mathrm{d}y+\displaystyle\iint\limits_{D}\cfrac{y\sin(\pi\sqrt{x^2+y^2})}{x+y}\mathrm{d}x\mathrm{d}y\right]\\ =&\cfrac{1}{2}\displaystyle\iint\limits_{D}\sin(\pi\sqrt{x^2+y^2})\mathrm{d}x\mathrm{d}y=\cfrac{1}{2}\displaystyle\int^{\frac{\pi}{2}}_0\mathrm{d}\theta\displaystyle\int^2_1\sin(\pi r)\mathrm{d}r\\ =&-\cfrac{1}{4}\displaystyle\int^2_1r\mathrm{d}(\pi r)=-\cfrac{3}{4}. \end{aligned} ====D∬x+yxsin(πx2+y2)dxdyD∬x+yysin(πx2+y2)dxdy21⎣⎡D∬x+yxsin(πx2+y2)dxdy+D∬x+yysin(πx2+y2)dxdy⎦⎤21D∬sin(πx2+y2)dxdy=21∫02πdθ∫12sin(πr)dr−41∫12rd(πr)=−43.
(这道题主要利用了函数积分的对称性求解)
解 显然 f ( 0 ) = 1 f(0)=1 f(0)=1,且 ∬ x 2 + y 2 ⩽ 4 t 2 f ( 1 2 x 2 + y 2 ) d x d y = ∫ 0 2 π d θ ∫ 0 2 t f ( 1 2 ρ ) ρ d ρ = 2 π ∫ 0 2 t ρ f ( 1 2 ρ ) d ρ \displaystyle\iint\limits_{x^2+y^2\leqslant4t^2}f\left(\cfrac{1}{2}\sqrt{x^2+y^2}\right)\mathrm{d}x\mathrm{d}y=\displaystyle\int^{2\pi}_0\mathrm{d}\theta\displaystyle\int^{2t}_0f\left(\cfrac{1}{2}\rho\right)\rho\mathrm{d}\rho=2\pi\displaystyle\int^{2t}_0\rho f\left(\cfrac{1}{2}\rho\right)\mathrm{d}\rho x2+y2⩽4t2∬f(21x2+y2)dxdy=∫02πdθ∫02tf(21ρ)ρdρ=2π∫02tρf(21ρ)dρ,则 f ( t ) = e 4 π t 2 + 2 π ∫ 0 2 t ρ f ( 1 2 ρ ) d ρ f(t)=e^{4\pi t^2}+2\pi\displaystyle\int^{2t}_0\rho f\left(\cfrac{1}{2}\rho\right)\mathrm{d}\rho f(t)=e4πt2+2π∫02tρf(21ρ)dρ。
对 t t t上式两端求导得 f ′ ( t ) = 8 π t e 4 π t 2 + 8 π t f ( t ) f'(t)=8\pi te^{4\pi t^2}+8\pi tf(t) f′(t)=8πte4πt2+8πtf(t)。由一阶线性微分方程通解公式得 f ( t ) = e ∫ 8 π t d t [ ∫ 8 π t e 4 π t 2 e − ∫ 8 π t d t d t + C ] = ( 4 π t 2 + C ) e 4 π t 2 f(t)=e^{\int8\pi t\mathrm{d}t}\left[\displaystyle\int8\pi te^{4\pi t^2}e^{-\int8\pi t\mathrm{d}t}\mathrm{d}t+C\right]=(4\pi t^2+C)e^{4\pi t^2} f(t)=e∫8πtdt[∫8πte4πt2e−∫8πtdtdt+C]=(4πt2+C)e4πt2。
由 f ( 0 ) = 1 f(0)=1 f(0)=1得 C = 1 C=1 C=1,因此 f ( t ) = ( 4 π t 2 + 1 ) e 4 π t 2 f(t)=(4\pi t^2+1)e^{4\pi t^2} f(t)=(4πt2+1)e4πt2。
(这道题主要利用了微分方程求解)
解
lim x → 0 + ∫ 0 x 2 d t ∫ x t f ( t , u ) d u 1 − e − x 3 = lim x → 0 + − ∫ 0 x d u ∫ 0 u 2 f ( t , u ) d t x 3 = − lim x → 0 + ∫ 0 x 2 f ( t , u ) d t 3 x 2 = − lim x → 0 + x 2 f ( c , x ) 3 x 2 = − 1 3 f ( 0 , 0 ) = 1 3 . \begin{aligned} &\lim\limits_{x\to0^+}\cfrac{\displaystyle\int^{x^2}_0\mathrm{d}t\displaystyle\int^{\sqrt{t}}_xf(t,u)\mathrm{d}u}{1-e^{-x^3}}\\ =&\lim\limits_{x\to0^+}\cfrac{-\displaystyle\int^x_0\mathrm{d}u\displaystyle\int^{u^2}_0f(t,u)\mathrm{d}t}{x^3}\\ =&-\lim\limits_{x\to0^+}\cfrac{\displaystyle\int^{x^2}_0f(t,u)\mathrm{d}t}{3x^2}\\ =&-\lim\limits_{x\to0^+}\cfrac{x^2f(c,x)}{3x^2}=-\cfrac{1}{3}f(0,0)=\cfrac{1}{3}. \end{aligned} ===x→0+lim1−e−x3∫0x2dt∫xtf(t,u)dux→0+limx3−∫0xdu∫0u2f(t,u)dt−x→0+lim3x2∫0x2f(t,u)dt−x→0+lim3x2x2f(c,x)=−31f(0,0)=31.
(这道题主要利用了积分换序求解)
证 由柯西积分不等式 ( ∫ a b f ( x ) g ( x ) d x ) 2 ⩽ ∫ a b f 2 ( x ) d x ⋅ ∫ a b g 2 ( x ) d x \left(\displaystyle\int^b_af(x)g(x)\mathrm{d}x\right)^2\leqslant\displaystyle\int^b_af^2(x)\mathrm{d}x\cdot\displaystyle\int^b_ag^2(x)\mathrm{d}x (∫abf(x)g(x)dx)2⩽∫abf2(x)dx⋅∫abg2(x)dx知
∫ a b f ( x ) d x ∫ a b 1 f ( x ) d x = ∫ a b ( f ( x ) ) 2 d x ∫ a b ( 1 f ( x ) ) 2 d x ⩾ ( ∫ a b f ( x ) ⋅ 1 f ( x ) d x ) 2 = ( b − a ) 2 \begin{aligned} \displaystyle\int^b_af(x)\mathrm{d}x\displaystyle\int^b_a\cfrac{1}{f(x)}\mathrm{d}x&=\displaystyle\int^b_a(\sqrt{f(x)})^2\mathrm{d}x\displaystyle\int^b_a\left(\sqrt{\cfrac{1}{f(x)}}\right)^2\mathrm{d}x\\ &\geqslant\left(\displaystyle\int^b_a\sqrt{f(x)}\cdot\cfrac{1}{\sqrt{f(x)}}\mathrm{d}x\right)^2=(b-a)^2 \end{aligned} ∫abf(x)dx∫abf(x)1dx=∫ab(f(x))2dx∫ab⎝⎛f(x)1⎠⎞2dx⩾(∫abf(x)⋅f(x)1dx)2=(b−a)2
(这道题主要利用了柯西中值定理求解,另这道题的另一种解法见高等数学张宇18讲第九讲积分等式与积分不等式的例9.7,传送门在这里)
证(这道题主要利用了积分的对称性求解,另这道题的解法见李永乐复习全书高等数学第三章一元函数积分学练习三的第十题,传送门在这里)
解 由于 L : { x 2 + y 2 + z 2 = R 2 , x + y + z = 0 L:\begin{cases}x^2+y^2+z^2=R^2,\\x+y+z=0\end{cases} L:{ x2+y2+z2=R2,x+y+z=0对变量 x , y , z x,y,z x,y,z有对称性,即三个变量 x , y , z x,y,z x,y,z中任意两个对称方程不变,则
∮ L x 2 d s = ∮ L y 2 d s = ∮ L z 2 d s = 1 3 ∮ L ( x 2 + y 2 + z 2 ) d s = 1 3 ∮ L R 2 d s = 2 π 3 R 3 . \displaystyle\oint_Lx^2\mathrm{d}s=\displaystyle\oint_Ly^2\mathrm{d}s=\displaystyle\oint_Lz^2\mathrm{d}s=\cfrac{1}{3}\displaystyle\oint_L(x^2+y^2+z^2)\mathrm{d}s=\cfrac{1}{3}\displaystyle\oint_LR^2\mathrm{d}s=\cfrac{2\pi}{3}R^3. ∮Lx2ds=∮Ly2ds=∮Lz2ds=31∮L(x2+y2+z2)ds=31∮LR2ds=32πR3.
(这道题主要利用了积分的对称性求解)
解 将柱面方程 x 2 + y 2 = R 2 x^2+y^2=R^2 x2+y2=R2代入积分式得 ∬ Σ d S x 2 + y 2 + z 2 = ∬ Σ d S R 2 + z 2 \displaystyle\iint\limits_{\Sigma}\cfrac{\mathrm{d}S}{x^2+y^2+z^2}=\displaystyle\iint\limits_{\Sigma}\cfrac{\mathrm{d}S}{R^2+z^2} Σ∬x2+y2+z2dS=Σ∬R2+z2dS。由于被积函数中只有 z z z,则面积微元 d S \mathrm{d}S dS可取为柱面 x 2 + y 2 = R 2 x^2+y^2=R^2 x2+y2=R2夹在两平面 z = 0 z=0 z=0和 z = R z=R z=R之间的部分,即 d S = 2 π R d z \mathrm{d}S=2\pi R\mathrm{d}z dS=2πRdz,则 ∬ Σ d S R 2 + z 2 = 2 π R ∫ 0 H d z R 2 + z 2 = 2 π arctan H R \displaystyle\iint\limits_{\Sigma}\cfrac{\mathrm{d}S}{R^2+z^2}=2\pi R\displaystyle\int^H_0\cfrac{\mathrm{d}z}{R^2+z^2}=2\pi\arctan\cfrac{H}{R} Σ∬R2+z2dS=2πR∫0HR2+z2dz=2πarctanRH。(这道题主要利用了积分定义求解)
如果觉得文章不错就点个赞吧。另外,如果有不同的观点,欢迎留言或私信。
欢迎非商业转载,转载请注明出处。