- BART&BERT
Ambition_LAO
深度学习
BART和BERT都是基于Transformer架构的预训练语言模型。模型架构:BERT(BidirectionalEncoderRepresentationsfromTransformers)主要是一个编码器(Encoder)模型,它使用了Transformer的编码器部分来处理输入的文本,并生成文本的表示。BERT特别擅长理解语言的上下文,因为它在预训练阶段使用了掩码语言模型(MLM)任务,即
- AI大模型的架构演进与最新发展
季风泯灭的季节
AI大模型应用技术二人工智能架构
随着深度学习的发展,AI大模型(LargeLanguageModels,LLMs)在自然语言处理、计算机视觉等领域取得了革命性的进展。本文将详细探讨AI大模型的架构演进,包括从Transformer的提出到GPT、BERT、T5等模型的历史演变,并探讨这些模型的技术细节及其在现代人工智能中的核心作用。一、基础模型介绍:Transformer的核心原理Transformer架构的背景在Transfo
- go语言安装快速入门
吉祥鸟hu
[TOC]go语言是什么Go是一个开源的编程语言,它能让构造简单、可靠且高效的软件变得容易。Go是从2007年末由RobertGriesemer,RobPike,KenThompson主持开发,后来还加入了IanLanceTaylor,RussCox等人,并最终于2009年11月开源,在2012年早些时候发布了Go1稳定版本。现在Go的开发已经是完全开放的,并且拥有一个活跃的社区如何安装环境笔者这
- 解决BERT模型bert-base-chinese报错(无法自动联网下载)
搬砖修狗
bert人工智能深度学习python
一、下载问题hugging-face是访问BERT模型的最初网站,但是目前hugging-face在中国多地不可达,在代码中涉及到该网站的模型都会报错,本文我们就以bert-base-chinese报错为例,提供一个下载到本地的方法来解决问题。二、网站google-bert(BERTcommunity)Thisorganizationismaintainedbythetransformerstea
- ROS yaml参数文件的使用
Sun Shiteng
ROS
举个例子,若在params.yaml文件中定义如下参数LidarImageFusion:points_src:"/hilbert_h/deskew/cloud_info"image_src:"/usb_cam0/image_raw"camera_info_src:"/home/hdj/fusion_slam/Color_SLAM_ws/src/hilbert_h/config/firefly_8s
- 《昇思 25 天学习打卡营第 25 天 | 基于 MindSpore 实现 BERT 对话情绪识别 》
Sam9029
Mindscope模型学习深度学习
《昇思25天学习打卡营第25天|基于MindSpore实现BERT对话情绪识别》活动地址:https://xihe.mindspore.cn/events/mindspore-training-camp签名:Sam9029环境配置确保安装了正确版本的MindSpore和MindNLP库。!pipuninstallmindspore-y!pipinstall-ihttps://pypi.mirror
- Go的学习路线
JSU-YSJ
Golang基础学习golang学习开发语言
Golang简介go语言Go(又称Golang)是Google的RobertGriesemer,RobPike及KenThompson开发的一种静态强类型、编译型语言。Go语言语法与C相近,但功能上有:内存安全,GC(垃圾回收),结构形态及CSP-style并发计算。为什么要学习Go现有的编程语言风格各异,不能完全的运动好电脑的硬件,不高效,及各种优势于一身的语言Golang(谷歌创建)兼容静态编
- K8S源码及定制化系列-源码解读第一步Kubectl(三)
申专
Golang云原生kubernetes容器云原生
本节重点介绍:kubectl的职责和kubectl的代码原理cobra库的使用简介kubectl的职责主要的工作是处理用户提交的东西(包括,命令行参数,yaml文件等)然后其会把用户提交的这些东西组织成一个数据结构体然后把其发送给APIServerKubectl系统架构图kubectl的代码原理从命令行和yaml文件中获取信息通过Builder模式并把其转成一系列的资源最后用Visitor模式模式
- 爱无常,恨无常,珍惜好时光
爱博文学翻译社
爱无常,恨无常,珍惜好时光编辑:AlbertXu片尾曲《匆匆那年》很好听,看的过程中感觉美好、惊醒、奇妙、困惑和无常:1.美好的是青春,是逝去的时光,是那些已经改变又从未改变的人,也是那些深深刻在脑海中的爱的印记,甚至是后悔,那些证明我们存在于世的全部经历。当人们从一个原点出发,相逢又散去,投入到各自的生活洪流中时,片刻的驻足,怀念起过去,几乎很多人都在习惯性美化它们。长大后觉得甜蜜的回忆,在经历
- 大规模语言模型的书籍分享,从零基础入门到精通非常详细收藏我这一篇就够了
黑客-雨
语言模型人工智能自然语言处理学习大模型学习大模型入门大模型教程
在当今人工智能领域,大规模语言模型成为了研究和应用的热点之一。它们以其大规模的参数和强大的性能表现,推动着机器学习和深度学习技术的发展。对于GPT系列大规模语言模型的发展历程,有两点令人印象深刻。第一点是可拓展的训练架构与学习范式:Transformer架构能够拓展到百亿、千亿甚至万亿参数规模,并且将预训练任务统一为预测下一个词这一通用学习范式;第二点是对于数据质量与数据规模的重视:不同于BERT
- 【Tools】大模型中的BERT概念
音乐学家方大刚
工具bert人工智能深度学习
摇来摇去摇碎点点的金黄伸手牵来一片梦的霞光南方的小巷推开多情的门窗年轻和我们歌唱摇来摇去摇着温柔的阳光轻轻托起一件梦的衣裳古老的都市每天都改变模样方芳《摇太阳》BERT(BidirectionalEncoderRepresentationsfromTransformers)是一种基于Transformer的预训练语言模型,由Google于2018年发布。BERT的目标是通过大规模无监督预训练学习来
- 详述Python环境下配置AI大模型Qwen-72B的步骤
Play_Sai
#Python开发pythonAI大模型人工智能
随着人工智能技术的发展,大规模预训练模型如Qwen-72B等逐渐成为研究和应用的重点。本篇博客旨在提供一份详细的指南,帮助Python开发者们在自己的环境中顺利配置并使用Qwen-72B大模型。请注意:由于Qwen-72B这一模型目前并未公开存在,所以以下内容仅为假设性描述,实际上你需要替换为你想要配置的真实存在的大模型,例如GPT-3、BERT等。一、环境准备1.安装必要的库首先确保你已经安装了
- 突发奇想,玩家用《我的世界》重现美术大师画作,还原度很高
爱游戏的萌博士
如果你喜欢绘画,在其中又特别钟情风景画的话,你可能听说过鲍伯·鲁斯(BobRoss)。这其实是罗伯特·诺曼·鲁斯(RobertNormanRoss)的艺名,他是位美国画家,同时也是一位艺术指导与电视节目主持人。鲁斯以他温柔且和乐的语气为特色,在他著名的电视节目“欢乐画室(TheJoyofPainting)”中担任即席教学画家兼主持人,这个节目活跃于上世纪八九十年代。博士为什么要提上面这位顶着爆炸头
- 大模型落地指南:从下载到本地化部署全流程解析
网安猫叔
人工智能自然语言处理语言模型AIGC深度学习
一、引言随着人工智能技术的迅猛发展,大规模预训练模型(如GPT-4、BERT等)在自然语言处理、图像识别等领域展现出了卓越的性能。然而,如何将这些强大的模型从理论落地到实际应用中,仍然是许多技术从业者面临的挑战。本篇文章旨在为读者提供一份详尽的大模型落地指南,从模型的下载、文件结构的解析,到本地化部署的具体步骤,全面覆盖整个流程。无论你是初次接触大模型的新手,还是希望深入了解部署细节的资深开发者,
- netty源码解读三(NioEventLoop)
orcharddd_real
nettyjavanetty
NioEventLoop初始化EventExecutor类型的数组数组大小默认为cpu数量的两倍,遍历数组,通过newNioEventLoop(xxx)往数组中添加元素,NioEventLoop继承了EventExecutor;每次需要线程时,执行chooser的next方法从数组中取出一个线程;关键代码打开netty源码,找到example包下的EchoService类,追溯创建boss线程组和
- 解决Can‘t load tokenizer for ‘bert-base-chinese‘.问题
CSDNhdlg
NLPbert人工智能深度学习自然语言处理
报错提示:OSError:Can'tloadtokenizerfor'bert-base-chinese'.Ifyouweretryingtoloaditfrom'https://huggingface.co/models',makesureyoudon'thavealocaldirectorywiththesamename.Otherwise,makesure'bert-base-chinese
- 如何用RoBERTa高效提取事件文本结构特征:多层次上下文建模与特征融合
大多_C
人工智能
基于RoBERTa-BASE的特征提取器,提取事件文本数据的结构特征(如段落和篇章结构)涉及多个步骤。RoBERTa作为一种预训练语言模型,可以很好地捕捉输入文本的上下文和依赖关系。具体步骤如下:1.文本预处理在提取事件文本的结构特征之前,需要对文本进行适当的预处理。这一步包括:分句和分段处理:将事件文本拆分为不同的句子或段落,并对每个句子/段落进行标记。每个段落可以视为一个独立的输入序列。Tok
- 这样的电影都骂烂,是我握不动刀还是有人太飘
Sir电影
年度最WTF电影来了!年度最争议电影来了!威尼斯电影节首映,有的观众起立鼓掌,有的观众恨不得朝屏幕丢鞋。观众这样,更别说影评人……迷之又迷的,比如《RogerEbert.com》:恐怖、勾人、迷惑……这是一部刷新你认知的电影。恨之入骨的,比如《纽约观察者报》——我不愿给它贴上“年度最差电影”标签,因为“世纪最差电影”更适合它。评分网站呢,一个比一个不给面子:IMDb7.0,烂番茄68%,豆瓣6.7
- Transformer、BERT、GPT、T5、LLM(大语言模型),以及它们在实际行业中的运用
Funhpc_huachen
transformerbertgpt语言模型深度学习
作为AI智能大模型的专家训练师,我将从主流模型框架的角度来分析其核心技术特点及其在不同实际行业中的应用。我们重点讨论以下几个主流模型框架:Transformer、BERT、GPT、T5、LLM(大语言模型),以及它们在实际行业中的运用。1.Transformer框架Transformer是一种基础的深度学习模型架构,由Google于2017年提出。它引入了注意力机制(Self-Attention)
- fpga图像处理实战-边缘检测 (Roberts算子)
梦梦梦梦子~
OV5640+图像处理图像处理计算机视觉人工智能
Roberts算子Roberts算子是一种用于边缘检测的算子,主要用于图像处理中检测图像的边缘。它是最早的边缘检测算法之一,以其计算简单、速度快而著称。Roberts算子通过计算图像像素在对角方向的梯度来检测边缘,从而突出图像中灰度变化最剧烈的部分。原理Roberts算子通过对图像应用两个2x2的卷积核(也称为掩模或滤波器)来计算图像在水平和垂直方向上的梯度。假设原始图像的像素值为I(x,y),则
- Rhinoceros 8 for Mac/Win:重塑三维建模边界的革新之作
平安喜乐616
Rhinoceros8Rhino8三维建模软件犀牛8
Rhinoceros8(简称Rhino8),作为一款由RobertMcNeel&Assoc公司开发的顶尖三维建模软件,无论是对于Mac还是Windows用户而言,都是一款不可多得的高效工具。Rhino8以其强大的功能、广泛的应用领域以及卓越的性能,在建筑设计、工业设计、产品设计、三维动画制作、科学研究及机械设计等多个领域展现出了非凡的实力。强大的建模能力Rhino8支持多种建模技术,包括曲面建模、
- 预训练语言模型的前世今生 - 从Word Embedding到BERT
脚步的影子
语言模型embeddingbert
目录一、预训练1.1图像领域的预训练1.2预训练的思想二、语言模型2.1统计语言模型2.2神经网络语言模型三、词向量3.1独热(Onehot)编码3.2WordEmbedding四、Word2Vec模型五、自然语言处理的预训练模型六、RNN和LSTM6.1RNN6.2RNN的梯度消失问题6.3LSTM6.4LSTM解决RNN的梯度消失问题七、ELMo模型7.1ELMo的预训练7.2ELMo的Fea
- 【大模型系列篇】预训练模型:BERT & GPT
木亦汐丫
大模型bertgpt人工智能预训练模型大模型
2018年,Google首次推出BERT(BidirectionalEncoderRepresentationsfromTransformers)。该模型是在大量文本语料库上结合无监督和监督学习进行训练的。BERT的目标是创建一种语言模型,可以理解句子中单词的上下文和含义,同时考虑到它前后出现的单词。2018年,OpenAI首次推出GPT(GenerativePre-trainedTransfor
- 【人工智能】Transformers之Pipeline(十三):填充蒙版(fill-mask)
LDG_AGI
Pipeline人工智能机器学习计算机视觉python时序数据库大数据自然语言处理
目录一、引言二、填充蒙版(fill-mask)2.1概述2.2技术原理2.2.1BERT模型的基本概念2.2.2BERT模型的工作原理2.2.3BERT模型的结构2.2.4BERT模型的应用2.2.5BERT模型与Transformer的区别和联系2.3应用场景2.4pipeline参数2.4.1pipeline对象实例化参数2.4.2pipeline对象使用参数2.4.3pipeline返回参数
- IT历史:互联网简史
weixin_34275734
网络操作系统java
Hobbes的互联网大事记-权威的互联网发展史Hobbes’Internet大事记v4.2作者:RobertH’obbes’ZakonInternet福音传道者译者:郭力Internet大事记的版权归RobertHZakon所有(c)1993-9。只要保留版权说明,给出在一个在本文档最后的指向本大事记的连接地址,并且不是出于商业目的,均可以使用本文的部分或全部内容,但是使用者必须向作者提供一份使用
- 大模型--个人学习心得
挚爱清&虚
人工智能
大模型LLM定义大模型LLM,全称LargeLanguageModel,即大型语言模型LLM是一种基于Transformer架构模型,它通过驯良大量文本数据,学习语言的语法、语义和上下文信息,从而能够对自然语言文本进行建模这种模型在自然语言处理(NLP)领域具有广泛应用常见的13个大模型BERT、GPT系列、T5、Meta的Llama系列、华为盘古模型、阿里巴巴通义大模型、科大讯飞星火大模型、百度
- 基于Bert-base-chinese训练多分类文本模型(代码详解)
一颗洋芋
bert分类自然语言处理
目录一、简介二、模型训练三、模型推理一、简介BERT(BidirectionalEncoderRepresentationsfromTransformers)是基于深度学习在自然语言处理(NLP)领域近几年出现的、影响深远的创新模型之一。在BERT之前,已经有许多预训练语言模型,如ELMO和GPT,它们展示了预训练模型在NLP任务中的强大性能。然而,这些模型通常基于单向的上下文信息,即只考虑文本中
- Java源码解读-数据容器都是如何实现同步的
问道飞鱼
Java开发Java源码解读数据容器同步机制
用Java的同学可能在自己使用或者面试的时候经常遇到这么一个问题,哪些数据结构或者容器是同步的,是怎么实现的同步?其实很多的数据同步原理都比较简单,我把目前知道的数据容器的同步方式稍微梳理了一下1.线程安全容器StringBuffer(太明显,synchronized关键字)@OverridepublicsynchronizedStringBufferappend(Stringstr){toStr
- 【深度学习 transformer】使用pytorch 训练transformer 模型,hugginface 来啦
东华果汁哥
深度学习-文本分类深度学习transformerpytorch
HuggingFace是一个致力于开源自然语言处理(NLP)和机器学习项目的社区。它由几个关键组件组成:Transformers:这是一个基于PyTorch的库,提供了各种预训练的NLP模型,如BERT、GPT、RoBERTa、DistilBERT等。它还提供了一个简单易用的API来加载这些模型,并进行微调以适应特定的下游任务。Datasets:这是一个用于加载和预处理NLP数据集的库,与Tran
- LLM大模型落地-从理论到实践
hhaiming_
语言模型人工智能ai深度学习
简述按个人偏好和目标总结了学习目标和路径(可按需学习),后续将陆续整理出相应学习资料和资源。学习目标熟悉主流LLM(Llama,ChatGLM,Qwen)的技术架构和技术细节;有实际应用RAG、PEFT和SFT的项目经验较强的NLP基础,熟悉BERT、T5、Transformer和GPT的实现和差异,能快速掌握业界进展,有对话系统相关研发经验掌握TensorRT-LLM、vLLM等主流推理加速框架
- Hadoop(一)
朱辉辉33
hadooplinux
今天在诺基亚第一天开始培训大数据,因为之前没接触过Linux,所以这次一起学了,任务量还是蛮大的。
首先下载安装了Xshell软件,然后公司给了账号密码连接上了河南郑州那边的服务器,接下来开始按照给的资料学习,全英文的,头也不讲解,说锻炼我们的学习能力,然后就开始跌跌撞撞的自学。这里写部分已经运行成功的代码吧.
在hdfs下,运行hadoop fs -mkdir /u
- maven An error occurred while filtering resources
blackproof
maven报错
转:http://stackoverflow.com/questions/18145774/eclipse-an-error-occurred-while-filtering-resources
maven报错:
maven An error occurred while filtering resources
Maven -> Update Proje
- jdk常用故障排查命令
daysinsun
jvm
linux下常见定位命令:
1、jps 输出Java进程
-q 只输出进程ID的名称,省略主类的名称;
-m 输出进程启动时传递给main函数的参数;
&nb
- java 位移运算与乘法运算
周凡杨
java位移运算乘法
对于 JAVA 编程中,适当的采用位移运算,会减少代码的运行时间,提高项目的运行效率。这个可以从一道面试题说起:
问题:
用最有效率的方法算出2 乘以8 等於几?”
答案:2 << 3
由此就引发了我的思考,为什么位移运算会比乘法运算更快呢?其实简单的想想,计算机的内存是用由 0 和 1 组成的二
- java中的枚举(enmu)
g21121
java
从jdk1.5开始,java增加了enum(枚举)这个类型,但是大家在平时运用中还是比较少用到枚举的,而且很多人和我一样对枚举一知半解,下面就跟大家一起学习下enmu枚举。先看一个最简单的枚举类型,一个返回类型的枚举:
public enum ResultType {
/**
* 成功
*/
SUCCESS,
/**
* 失败
*/
FAIL,
- MQ初级学习
510888780
activemq
1.下载ActiveMQ
去官方网站下载:http://activemq.apache.org/
2.运行ActiveMQ
解压缩apache-activemq-5.9.0-bin.zip到C盘,然后双击apache-activemq-5.9.0-\bin\activemq-admin.bat运行ActiveMQ程序。
启动ActiveMQ以后,登陆:http://localhos
- Spring_Transactional_Propagation
布衣凌宇
springtransactional
//事务传播属性
@Transactional(propagation=Propagation.REQUIRED)//如果有事务,那么加入事务,没有的话新创建一个
@Transactional(propagation=Propagation.NOT_SUPPORTED)//这个方法不开启事务
@Transactional(propagation=Propagation.REQUIREDS_N
- 我的spring学习笔记12-idref与ref的区别
aijuans
spring
idref用来将容器内其他bean的id传给<constructor-arg>/<property>元素,同时提供错误验证功能。例如:
<bean id ="theTargetBean" class="..." />
<bean id ="theClientBean" class=&quo
- Jqplot之折线图
antlove
jsjqueryWebtimeseriesjqplot
timeseriesChart.html
<script type="text/javascript" src="jslib/jquery.min.js"></script>
<script type="text/javascript" src="jslib/excanvas.min.js&
- JDBC中事务处理应用
百合不是茶
javaJDBC编程事务控制语句
解释事务的概念; 事务控制是sql语句中的核心之一;事务控制的作用就是保证数据的正常执行与异常之后可以恢复
事务常用命令:
Commit提交
- [转]ConcurrentHashMap Collections.synchronizedMap和Hashtable讨论
bijian1013
java多线程线程安全HashMap
在Java类库中出现的第一个关联的集合类是Hashtable,它是JDK1.0的一部分。 Hashtable提供了一种易于使用的、线程安全的、关联的map功能,这当然也是方便的。然而,线程安全性是凭代价换来的――Hashtable的所有方法都是同步的。此时,无竞争的同步会导致可观的性能代价。Hashtable的后继者HashMap是作为JDK1.2中的集合框架的一部分出现的,它通过提供一个不同步的
- ng-if与ng-show、ng-hide指令的区别和注意事项
bijian1013
JavaScriptAngularJS
angularJS中的ng-show、ng-hide、ng-if指令都可以用来控制dom元素的显示或隐藏。ng-show和ng-hide根据所给表达式的值来显示或隐藏HTML元素。当赋值给ng-show指令的值为false时元素会被隐藏,值为true时元素会显示。ng-hide功能类似,使用方式相反。元素的显示或
- 【持久化框架MyBatis3七】MyBatis3定义typeHandler
bit1129
TypeHandler
什么是typeHandler?
typeHandler用于将某个类型的数据映射到表的某一列上,以完成MyBatis列跟某个属性的映射
内置typeHandler
MyBatis内置了很多typeHandler,这写typeHandler通过org.apache.ibatis.type.TypeHandlerRegistry进行注册,比如对于日期型数据的typeHandler,
- 上传下载文件rz,sz命令
bitcarter
linux命令rz
刚开始使用rz上传和sz下载命令:
因为我们是通过secureCRT终端工具进行使用的所以会有上传下载这样的需求:
我遇到的问题:
sz下载A文件10M左右,没有问题
但是将这个文件A再传到另一天服务器上时就出现传不上去,甚至出现乱码,死掉现象,具体问题
解决方法:
上传命令改为;rz -ybe
下载命令改为:sz -be filename
如果还是有问题:
那就是文
- 通过ngx-lua来统计nginx上的虚拟主机性能数据
ronin47
ngx-lua 统计 解禁ip
介绍
以前我们为nginx做统计,都是通过对日志的分析来完成.比较麻烦,现在基于ngx_lua插件,开发了实时统计站点状态的脚本,解放生产力.项目主页: https://github.com/skyeydemon/ngx-lua-stats 功能
支持分不同虚拟主机统计, 同一个虚拟主机下可以分不同的location统计.
可以统计与query-times request-time
- java-68-把数组排成最小的数。一个正整数数组,将它们连接起来排成一个数,输出能排出的所有数字中最小的。例如输入数组{32, 321},则输出32132
bylijinnan
java
import java.util.Arrays;
import java.util.Comparator;
public class MinNumFromIntArray {
/**
* Q68输入一个正整数数组,将它们连接起来排成一个数,输出能排出的所有数字中最小的一个。
* 例如输入数组{32, 321},则输出这两个能排成的最小数字32132。请给出解决问题
- Oracle基本操作
ccii
Oracle SQL总结Oracle SQL语法Oracle基本操作Oracle SQL
一、表操作
1. 常用数据类型
NUMBER(p,s):可变长度的数字。p表示整数加小数的最大位数,s为最大小数位数。支持最大精度为38位
NVARCHAR2(size):变长字符串,最大长度为4000字节(以字符数为单位)
VARCHAR2(size):变长字符串,最大长度为4000字节(以字节数为单位)
CHAR(size):定长字符串,最大长度为2000字节,最小为1字节,默认
- [强人工智能]实现强人工智能的路线图
comsci
人工智能
1:创建一个用于记录拓扑网络连接的矩阵数据表
2:自动构造或者人工复制一个包含10万个连接(1000*1000)的流程图
3:将这个流程图导入到矩阵数据表中
4:在矩阵的每个有意义的节点中嵌入一段简单的
- 给Tomcat,Apache配置gzip压缩(HTTP压缩)功能
cwqcwqmax9
apache
背景:
HTTP 压缩可以大大提高浏览网站的速度,它的原理是,在客户端请求网页后,从服务器端将网页文件压缩,再下载到客户端,由客户端的浏览器负责解压缩并浏览。相对于普通的浏览过程HTML ,CSS,Javascript , Text ,它可以节省40%左右的流量。更为重要的是,它可以对动态生成的,包括CGI、PHP , JSP , ASP , Servlet,SHTML等输出的网页也能进行压缩,
- SpringMVC and Struts2
dashuaifu
struts2springMVC
SpringMVC VS Struts2
1:
spring3开发效率高于struts
2:
spring3 mvc可以认为已经100%零配置
3:
struts2是类级别的拦截, 一个类对应一个request上下文,
springmvc是方法级别的拦截,一个方法对应一个request上下文,而方法同时又跟一个url对应
所以说从架构本身上 spring3 mvc就容易实现r
- windows常用命令行命令
dcj3sjt126com
windowscmdcommand
在windows系统中,点击开始-运行,可以直接输入命令行,快速打开一些原本需要多次点击图标才能打开的界面,如常用的输入cmd打开dos命令行,输入taskmgr打开任务管理器。此处列出了网上搜集到的一些常用命令。winver 检查windows版本 wmimgmt.msc 打开windows管理体系结构(wmi) wupdmgr windows更新程序 wscrip
- 再看知名应用背后的第三方开源项目
dcj3sjt126com
ios
知名应用程序的设计和技术一直都是开发者需要学习的,同样这些应用所使用的开源框架也是不可忽视的一部分。此前《
iOS第三方开源库的吐槽和备忘》中作者ibireme列举了国内多款知名应用所使用的开源框架,并对其中一些框架进行了分析,同样国外开发者
@iOSCowboy也在博客中给我们列出了国外多款知名应用使用的开源框架。另外txx's blog中详细介绍了
Facebook Paper使用的第三
- Objective-c单例模式的正确写法
jsntghf
单例iosiPhone
一般情况下,可能我们写的单例模式是这样的:
#import <Foundation/Foundation.h>
@interface Downloader : NSObject
+ (instancetype)sharedDownloader;
@end
#import "Downloader.h"
@implementation
- jquery easyui datagrid 加载成功,选中某一行
hae
jqueryeasyuidatagrid数据加载
1.首先你需要设置datagrid的onLoadSuccess
$(
'#dg'
).datagrid({onLoadSuccess :
function
(data){
$(
'#dg'
).datagrid(
'selectRow'
,3);
}});
2.onL
- jQuery用户数字打分评价效果
ini
JavaScripthtmljqueryWebcss
效果体验:http://hovertree.com/texiao/jquery/5.htmHTML文件代码:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>jQuery用户数字打分评分代码 - HoverTree</
- mybatis的paramType
kerryg
DAOsql
MyBatis传多个参数:
1、采用#{0},#{1}获得参数:
Dao层函数方法:
public User selectUser(String name,String area);
对应的Mapper.xml
<select id="selectUser" result
- centos 7安装mysql5.5
MrLee23
centos
首先centos7 已经不支持mysql,因为收费了你懂得,所以内部集成了mariadb,而安装mysql的话会和mariadb的文件冲突,所以需要先卸载掉mariadb,以下为卸载mariadb,安装mysql的步骤。
#列出所有被安装的rpm package rpm -qa | grep mariadb
#卸载
rpm -e mariadb-libs-5.
- 利用thrift来实现消息群发
qifeifei
thrift
Thrift项目一般用来做内部项目接偶用的,还有能跨不同语言的功能,非常方便,一般前端系统和后台server线上都是3个节点,然后前端通过获取client来访问后台server,那么如果是多太server,就是有一个负载均衡的方法,然后最后访问其中一个节点。那么换个思路,能不能发送给所有节点的server呢,如果能就
- 实现一个sizeof获取Java对象大小
teasp
javaHotSpot内存对象大小sizeof
由于Java的设计者不想让程序员管理和了解内存的使用,我们想要知道一个对象在内存中的大小变得比较困难了。本文提供了可以获取对象的大小的方法,但是由于各个虚拟机在内存使用上可能存在不同,因此该方法不能在各虚拟机上都适用,而是仅在hotspot 32位虚拟机上,或者其它内存管理方式与hotspot 32位虚拟机相同的虚拟机上 适用。
- SVN错误及处理
xiangqian0505
SVN提交文件时服务器强行关闭
在SVN服务控制台打开资源库“SVN无法读取current” ---摘自网络 写道 SVN无法读取current修复方法 Can't read file : End of file found
文件:repository/db/txn_current、repository/db/current
其中current记录当前最新版本号,txn_current记录版本库中版本