PaddleLite——将水果分类模型部署到树莓派

本项目手把手带你实现了在树莓派端基于视频流的水果分类。

目录

  • 1. VOC数据集的准备
  • 2. 水果分类模型的训练
  • 3. 树莓派上摄像头的调试和配置
  • 4. 跑通Paddle-Lite-Demo
  • 5. 部署水果分类的模型
      • 5.1 在AI studio上准备模型文件
        • 5.1.1 导出模型文件
        • 5.1.2 输出一个可执行模型
      • 5.2 部署模型到树莓派
        • 5.2.1 模型的导入
        • 5.2.2 修改`object_detection_demo.cc`文件
        • 5.2.3 修改`run.sh`文件
      • 5.3 运行模型
  • 6. Paddle-Lite手册地址
  • 7. 问题求助

1. VOC数据集的准备

PaddleDetection——VOC数据集的准备

2. 水果分类模型的训练

PaddleDetection——水果分类项目实战

3. 树莓派上摄像头的调试和配置

树莓派——CSI摄像头和USB摄像头的配置与调试

4. 跑通Paddle-Lite-Demo

Paddle Lite——树莓派端部署实现实时视频流目标检测demo

5. 部署水果分类的模型

5.1 在AI studio上准备模型文件

5.1.1 导出模型文件

训练后导出paddle原生模型文件:

!python -u tools/export_model.py -c configs/yolov3_mobilenet_v1_fruit.yml

5.1.2 输出一个可执行模型

在模型训练并导出完成后,使用opt模型转换工具实现模型的转换:

#下载opt文件
#这一步需要注意下载与自己Paddle-Lite版本对应的opt文件,在https://github.com/PaddlePaddle/Paddle-Lite/releases找到与自己版本对应的opt链接
!wget https://github.com/PaddlePaddle/Paddle-Lite/releases/download/v2.7/opt_linux
#复制opt文件到相应目录下
!cp opt_linux /home/aistudio/PaddleDetection/output/yolov3_mobilenet_v1_fruit
#进入预测模型文件夹
%cd /home/aistudio/PaddleDetection/output/yolov3_mobilenet_v1_fruit
#给opt加上可执行权限
!chmod +x opt_linux
#使用opt进行模型转化,将__model__和__params__转化为model.nb
!./opt_linux --model_file=__model__ --param_file=__params__ --valid_targets=arm --optimize_out_type=naive_buffer   --optimize_out=./model
#查看文件夹内容,检查模型是否转换成功
!ls

PaddleLite——将水果分类模型部署到树莓派_第1张图片
最后将模型文件下载到本地即可。

5.2 部署模型到树莓派

5.2.1 模型的导入

使用winscp将 .nb 模型文件放在home/pi/Paddle-Lite-Demo/PaddleLite-armlinux-demo/object_detection_demo/models/fruit_detection文件夹下;
PaddleLite——将水果分类模型部署到树莓派_第2张图片

5.2.2 修改object_detection_demo.cc文件

这个文件是模型的c++部署代码,是整个项目工作的逻辑和核心。

由于demo的模型是ssd而水果分类用的是Yolov3,所以demo给的.cc文件并不适用,因此我们要对文件进行修改。

我在Paddle-Lite的Github上找到Yolov3的.cc的demo文件:
https://github.com/PaddlePaddle/Paddle-Lite/blob/develop/lite/demo/cxx/yolov3_detection/yolov3_detection.cc,该demo是基于图片检测的,而我要实现的是基于视频流下的检测,稍作修改后得到内容如下:

#include 
#include 
#include "opencv2/core.hpp"
#include "opencv2/imgcodecs.hpp"
#include 
#include "opencv2/imgproc.hpp"
#include "paddle_api.h"  // NOLINT
/
// If this demo is linked to static library:libpaddle_api_light_bundled.a
// , you should include `paddle_use_ops.h` and `paddle_use_kernels.h` to
// avoid linking errors such as `unsupport ops or kernels`.
/
// #include "paddle_use_kernels.h"  // NOLINT
// #include "paddle_use_ops.h"      // NOLINT

using namespace paddle::lite_api;  // NOLINT

struct Object {
     
  cv::Rect rec;
  int class_id;
  float prob;
};

int64_t ShapeProduction(const shape_t& shape) {
     
  int64_t res = 1;
  for (auto i : shape) res *= i;
  return res;
}

const char* class_names[] = {
     "apple",        "banana",      "orange",
};

// fill tensor with mean and scale and trans layout: nhwc -> nchw, neon speed up
void neon_mean_scale(const float* din,
                     float* dout,
                     int size,
                     const std::vector<float> mean,
                     const std::vector<float> scale) {
     
  if (mean.size() != 3 || scale.size() != 3) {
     
    std::cerr << "[ERROR] mean or scale size must equal to 3\n";
    exit(1);
  }
  float32x4_t vmean0 = vdupq_n_f32(mean[0]);
  float32x4_t vmean1 = vdupq_n_f32(mean[1]);
  float32x4_t vmean2 = vdupq_n_f32(mean[2]);
  float32x4_t vscale0 = vdupq_n_f32(1.f / scale[0]);
  float32x4_t vscale1 = vdupq_n_f32(1.f / scale[1]);
  float32x4_t vscale2 = vdupq_n_f32(1.f / scale[2]);

  float* dout_c0 = dout;
  float* dout_c1 = dout + size;
  float* dout_c2 = dout + size * 2;

  int i = 0;
  for (; i < size - 3; i += 4) {
     
    float32x4x3_t vin3 = vld3q_f32(din);
    float32x4_t vsub0 = vsubq_f32(vin3.val[0], vmean0);
    float32x4_t vsub1 = vsubq_f32(vin3.val[1], vmean1);
    float32x4_t vsub2 = vsubq_f32(vin3.val[2], vmean2);
    float32x4_t vs0 = vmulq_f32(vsub0, vscale0);
    float32x4_t vs1 = vmulq_f32(vsub1, vscale1);
    float32x4_t vs2 = vmulq_f32(vsub2, vscale2);
    vst1q_f32(dout_c0, vs0);
    vst1q_f32(dout_c1, vs1);
    vst1q_f32(dout_c2, vs2);

    din += 12;
    dout_c0 += 4;
    dout_c1 += 4;
    dout_c2 += 4;
  }
  for (; i < size; i++) {
     
    *(dout_c0++) = (*(din++) - mean[0]) * scale[0];
    *(dout_c0++) = (*(din++) - mean[1]) * scale[1];
    *(dout_c0++) = (*(din++) - mean[2]) * scale[2];
  }
}

void pre_process(const cv::Mat& img, int width, int height, float* data) {
     
  cv::Mat rgb_img;
  cv::cvtColor(img, rgb_img, cv::COLOR_BGR2RGB);
  cv::resize(
      rgb_img, rgb_img, cv::Size(width, height), 0.f, 0.f, cv::INTER_CUBIC);
  cv::Mat imgf;
  rgb_img.convertTo(imgf, CV_32FC3, 1 / 255.f);
  std::vector<float> mean = {
     0.485f, 0.456f, 0.406f};
  std::vector<float> scale = {
     0.229f, 0.224f, 0.225f};
  const float* dimg = reinterpret_cast<const float*>(imgf.data);
  neon_mean_scale(dimg, data, width * height, mean, scale);
}

std::vector<Object> detect_object(const float* data,
                                  int count,
                                  float thresh,
                                  cv::Mat& image) {
       // NOLINT
  if (data == nullptr) {
     
    std::cerr << "[ERROR] data can not be nullptr\n";
    exit(1);
  }
  std::vector<Object> rect_out;
  for (int iw = 0; iw < count; iw++) {
     
    int oriw = image.cols;
    int orih = image.rows;
    if (data[1] > thresh) {
     
      Object obj;
      int x = static_cast<int>(data[2]);
      int y = static_cast<int>(data[3]);
      int w = static_cast<int>(data[4] - data[2] + 1);
      int h = static_cast<int>(data[5] - data[3] + 1);
      cv::Rect rec_clip =
          cv::Rect(x, y, w, h) & cv::Rect(0, 0, image.cols, image.rows);
      obj.class_id = static_cast<int>(data[0]);
      obj.prob = data[1];
      obj.rec = rec_clip;
      if (w > 0 && h > 0 && obj.prob <= 1) {
     
        rect_out.push_back(obj);
        cv::rectangle(image, rec_clip, cv::Scalar(0, 0, 255), 1, cv::LINE_AA);
        std::string str_prob = std::to_string(obj.prob);
        std::string text = std::string(class_names[obj.class_id]) + ": " +
                           str_prob.substr(0, str_prob.find(".") + 4);
        int font_face = cv::FONT_HERSHEY_COMPLEX_SMALL;
        double font_scale = 1.f;
        int thickness = 1;
        cv::Size text_size =
            cv::getTextSize(text, font_face, font_scale, thickness, nullptr);
        float new_font_scale = w * 0.5 * font_scale / text_size.width;
        text_size = cv::getTextSize(
            text, font_face, new_font_scale, thickness, nullptr);
        cv::Point origin;
        origin.x = x + 3;
        origin.y = y + text_size.height + 3;
        cv::putText(image,
                    text,
                    origin,
                    font_face,
                    new_font_scale,
                    cv::Scalar(0, 255, 255),
                    thickness,
                    cv::LINE_AA);

        std::cout << "detection, image size: " << image.cols << ", "
                  << image.rows
                  << ", detect object: " << class_names[obj.class_id]
                  << ", score: " << obj.prob << ", location: x=" << x
                  << ", y=" << y << ", width=" << w << ", height=" << h
                  << std::endl;
      }
    }
    data += 6;
  }
  return rect_out;
}

void RunModel(std::string model_file, const cv::Mat& img) {
     
  // 1. Set MobileConfig
  MobileConfig config;
  config.set_model_from_file(model_file);
  
  // 2. Create PaddlePredictor by MobileConfig
  std::shared_ptr<PaddlePredictor> predictor =
      CreatePaddlePredictor<MobileConfig>(config);
  const int in_width = 320;
  const int in_height = 320;
  

  // 3. Prepare input data from image
  // input 0
  std::unique_ptr<Tensor> input_tensor0(std::move(predictor->GetInput(0)));
  input_tensor0->Resize({
     1, 3, in_height, in_width});
  auto* data0 = input_tensor0->mutable_data<float>();
  pre_process(img, in_width, in_height, data0);

  // input1
  std::unique_ptr<Tensor> input_tensor1(std::move(predictor->GetInput(1)));
  input_tensor1->Resize({
     1, 2});
  auto* data1 = input_tensor1->mutable_data<int>();
  data1[0] = img.rows;
  data1[1] = img.cols;

  // 4. Run predictor
  predictor->Run();

  // 5. Get output and post process
  std::unique_ptr<const Tensor> output_tensor(
      std::move(predictor->GetOutput(0)));
  auto* outptr = output_tensor->data<float>();
  auto shape_out = output_tensor->shape();
  int64_t cnt = 1;
  for (auto& i : shape_out) {
     
    cnt *= i;
  }
  cv::Mat output_image = img.clone();
  auto rec_out = detect_object(outptr, static_cast<int>(cnt / 6), 0.5f, output_image);
  cv::imshow("Object Detection Demo", output_image);
}

int main(int argc, char** argv) {
     
  std::string model_file = argv[1];
  cv::VideoCapture cap(-1);
  cap.set(CV_CAP_PROP_FRAME_WIDTH, 640);
  cap.set(CV_CAP_PROP_FRAME_HEIGHT, 480);
  if (!cap.isOpened()) {
     
      return -1;
    }
  while (1) {
     
      cv::Mat input_image;
      cap >> input_image;
      RunModel(model_file, input_image);
      if (cv::waitKey(1) == char('q')) {
     
        break;
      }
    }
  cap.release();
  cv::destroyAllWindows();
    
  return 0;
}

关于此段代码的解读请参考:https://github.com/PaddleCV-FAQ/PaddleDetection-FAQ/blob/main/Lite%E9%83%A8%E7%BD%B2/yolov3_for_raspi.md

这一步是整个部署过程的难点。

5.2.3 修改run.sh文件

根据.cc文件中需要用到的输入参数修改(用文本编辑器打开并修改即可)。

在本项目中,我的.cc文件只需要用到model,因此只有一个model地址的参数。

#!/bin/bash

# configure
#TARGET_ARCH_ABI=armv8 # for RK3399, set to default arch abi
TARGET_ARCH_ABI=armv7hf # for Raspberry Pi 3B
PADDLE_LITE_DIR=../Paddle-Lite
if [ "x$1" != "x" ]; then
    TARGET_ARCH_ABI=$1
fi

# build
rm -rf build
mkdir build
cd build
cmake -DPADDLE_LITE_DIR=${
     PADDLE_LITE_DIR} -DTARGET_ARCH_ABI=${
     TARGET_ARCH_ABI} ..
make

#run
#这里修改.cc文件需要的输入参数,如模型地址、图片地址等
LD_LIBRARY_PATH=$LD_LIBRARY_PATH:${
     PADDLE_LITE_DIR}/libs/${
     TARGET_ARCH_ABI} ./object_detection_demo ../models/fruit_detection/model.nb 

5.3 运行模型

cd Paddle-Lite-Demo/PaddleLite-armlinux-demo/object_detection_demo
./run.sh

PaddleLite——将水果分类模型部署到树莓派_第3张图片

6. Paddle-Lite手册地址

https://paddle-lite.readthedocs.io/zh/latest/index.html

7. 问题求助

目标检测的结果和准确度基本正常,但是摄像头延迟非常高,大概有40s左右,并且还会出现掉帧的现象,希望能得到大佬的帮助!

你可能感兴趣的:(PaddlePaddle,opencv,深度学习,paddlepaddle)