题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4679
题意:给一颗树,每个边有一个权值,要你去掉一条边权值w剩下的两颗子树中分别的最长链a,b,使得w*Min(a,b)最小。。
说白了就是要枚举每条边,然后在O(1)的时间内求出两颗子树的最长链。因此我们可以考虑用树形DP,首先一遍DFS,对于每个节点维护两个信息,hign[u]:u为根节点的子树的深度,f[u]:u为根节点的子树的最长链。然后还要维护一个hige[i][0]和hige[i][1],分别表示u为根节点的子树,不包括边 i 的深度和最长链。然后再一遍DFS,根据上一节点的信息递推过去就可以在O(1)的时间内求出来了,总复杂度O(E)。有些细节要考虑,开始把全局变量搞混,wa了几次T^T。。
1 //STATUS:C++_AC_875MS_11012KB 2 #include <functional> 3 #include <algorithm> 4 #include <iostream> 5 //#include <ext/rope> 6 #include <fstream> 7 #include <sstream> 8 #include <iomanip> 9 #include <numeric> 10 #include <cstring> 11 #include <cassert> 12 #include <cstdio> 13 #include <string> 14 #include <vector> 15 #include <bitset> 16 #include <queue> 17 #include <stack> 18 #include <cmath> 19 #include <ctime> 20 #include <list> 21 #include <set> 22 #include <map> 23 using namespace std; 24 #pragma comment(linker,"/STACK:102400000,102400000") 25 //using namespace __gnu_cxx; 26 //define 27 #define pii pair<int,int> 28 #define mem(a,b) memset(a,b,sizeof(a)) 29 #define lson l,mid,rt<<1 30 #define rson mid+1,r,rt<<1|1 31 #define PI acos(-1.0) 32 //typedef 33 typedef __int64 LL; 34 typedef unsigned __int64 ULL; 35 //const 36 const int N=100010; 37 const int INF=0x3f3f3f3f; 38 const LL MOD=1000000007,STA=8000010; 39 const LL LNF=1LL<<55; 40 const double EPS=1e-9; 41 const double OO=1e50; 42 const int dx[8]={-1,-1,0,1,1,1,0,-1}; 43 const int dy[8]={0,1,1,1,0,-1,-1,-1}; 44 const int day[13]={0,31,28,31,30,31,30,31,31,30,31,30,31}; 45 //Daily Use ... 46 inline int sign(double x){return (x>EPS)-(x<-EPS);} 47 template<class T> T gcd(T a,T b){return b?gcd(b,a%b):a;} 48 template<class T> T lcm(T a,T b){return a/gcd(a,b)*b;} 49 template<class T> inline T lcm(T a,T b,T d){return a/d*b;} 50 template<class T> inline T Min(T a,T b){return a<b?a:b;} 51 template<class T> inline T Max(T a,T b){return a>b?a:b;} 52 template<class T> inline T Min(T a,T b,T c){return min(min(a, b),c);} 53 template<class T> inline T Max(T a,T b,T c){return max(max(a, b),c);} 54 template<class T> inline T Min(T a,T b,T c,T d){return min(min(a, b),min(c,d));} 55 template<class T> inline T Max(T a,T b,T c,T d){return max(max(a, b),max(c,d));} 56 //End 57 58 struct Edge{ 59 int u,v,w,id; 60 }e[N<<1]; 61 int first[N],next[N<<1],hign[N],hige[N<<1][2]; 62 int f[N],maxl1[N],maxr1[N],maxl2[N],maxr2[N],maxlf[N],maxrf[N],d[N],w[N]; 63 int n,mt; 64 int T,ans,ansid; 65 66 void adde(int a,int b,int c,int id) 67 { 68 e[mt].u=a,e[mt].v=b,e[mt].w=c,e[mt].id=id; 69 next[mt]=first[a];first[a]=mt++; 70 e[mt].u=b,e[mt].v=a,e[mt].w=c,e[mt].id=id; 71 next[mt]=first[b];first[b]=mt++; 72 } 73 74 void dfs1(int u,int fa) 75 { 76 int i,j,v,cnt=1,flag=0; 77 f[u]=0; 78 for(i=first[u];i!=-1;i=next[i]){ 79 if((v=e[i].v)==fa)continue; 80 dfs1(v,u); 81 f[u]=Max(f[u],f[v]); 82 flag=1; 83 } 84 if(!flag){f[u]=hign[u]=0;return;} 85 for(i=first[u];i!=-1;i=next[i]){ 86 if((v=e[i].v)==fa)continue; 87 w[cnt]=v; 88 d[cnt++]=hign[v]+1; 89 } 90 maxl1[0]=maxr1[cnt]=maxl2[0]=maxr2[cnt]=maxlf[0]=maxrf[cnt]=0; 91 for(i=1;i<cnt;i++){ 92 maxlf[i]=Max(maxlf[i-1],f[w[i]]); 93 maxl1[i]=maxl1[i-1],maxl2[i]=maxl2[i-1]; 94 if(d[i]>maxl1[i])maxl2[i]=maxl1[i],maxl1[i]=d[i]; 95 else if(d[i]>maxl2[i])maxl2[i]=d[i]; 96 } 97 for(i=cnt-1;i>0;i--){ 98 maxrf[i]=Max(maxrf[i+1],f[w[i]]); 99 maxr1[i]=maxr1[i+1],maxr2[i]=maxr2[i+1]; 100 if(d[i]>maxr1[i])maxr2[i]=maxr1[i],maxr1[i]=d[i]; 101 else if(d[i]>maxr2[i])maxr2[i]=d[i]; 102 } 103 for(j=1,i=first[u];i!=-1;i=next[i]){ 104 if(e[i].v==fa)continue; 105 hige[i][0]=Max(maxl1[j-1],maxr1[j+1]); 106 hige[i][1]=Max(maxl1[j-1]+maxr1[j+1], 107 maxl1[j-1]+maxl2[j-1],maxr1[j+1]+maxr2[j+1]); 108 hige[i][1]=Max(hige[i][1],maxlf[j-1],maxrf[j+1]); 109 j++; 110 } 111 f[u]=Max(f[u],maxr1[1]+maxr2[1]); 112 hign[u]=maxr1[1]; 113 } 114 115 void dfs2(int u,int fa,int max1,int max2) 116 { 117 int i,j,v,t1,t2,nt; 118 for(i=first[u];i!=-1;i=next[i]){ 119 if((v=e[i].v)==fa)continue; 120 t1=Max(hige[i][1],max2,max1+hige[i][0]); 121 nt=Max(f[v],t1)*e[i].w; 122 if(ans>nt || (ans==nt && e[i].id<ansid)){ 123 ans=nt; 124 ansid=e[i].id; 125 } 126 t2=Max(max1,hige[i][0])+1; 127 dfs2(v,u,t2,Max(t1,t2)); 128 } 129 } 130 131 int main(){ 132 // freopen("in.txt","r",stdin); 133 int i,j,a,b,c,ca=1; 134 scanf("%d",&T); 135 while(T--) 136 { 137 scanf("%d",&n); 138 mem(first,-1);mt=0; 139 for(i=1;i<n;i++){ 140 scanf("%d%d%d",&a,&b,&c); 141 adde(a,b,c,i); 142 } 143 144 dfs1(1,0); 145 ans=INF; 146 dfs2(1,0,0,0); 147 148 printf("Case #%d: %d\n",ca++,ansid); 149 } 150 return 0; 151 }