OkHttp3 源码解析 连接池的复用

前面一篇文章【OkHttp3 执行流程】里面分析了OkHttp3的请求过程。今天的文章将对OkHttp3的连接池的复用进行深一步的分析,通过对连接池的管理,复用连接,减少了频繁的网络请求导致性能下降的问题。我们知道,Http是基于TCP协议的,而TCP建立连接需要经过三次握手,断开需要经过四次挥手,因此,Http中添加了一种KeepAlive机制,当数据传输完毕后仍然保持连接,等待下一次请求时直接复用该连接。

1、找到获取连接的入口,ConnectInterceptor的intercept()方法

public Response intercept(Chain chain) throws IOException {
    RealInterceptorChain realChain = (RealInterceptorChain) chain;
    Request request = realChain.request();
    StreamAllocation streamAllocation = realChain.streamAllocation();

    // We need the network to satisfy this request. Possibly for validating a conditional GET.
    boolean doExtensiveHealthChecks = !request.method().equals("GET");
    // 1
    HttpCodec httpCodec = streamAllocation.newStream(client, chain, doExtensiveHealthChecks);
    RealConnection connection = streamAllocation.connection();

    return realChain.proceed(request, streamAllocation, httpCodec, connection);
  }

在注释1处利用StreamAllocation的newStream()获取httpCodec对象,这个过程会从连接池中寻找是否有可用连接,若有,则返回;若没有,则创建一个新的连接,并加入连接池中。

2、newStream()的内部实现

public HttpCodec newStream(
      OkHttpClient client, Interceptor.Chain chain, boolean doExtensiveHealthChecks) {
    int connectTimeout = chain.connectTimeoutMillis();
    int readTimeout = chain.readTimeoutMillis();
    int writeTimeout = chain.writeTimeoutMillis();
    int pingIntervalMillis = client.pingIntervalMillis();
    boolean connectionRetryEnabled = client.retryOnConnectionFailure();

    try {
      RealConnection resultConnection = findHealthyConnection(connectTimeout, readTimeout,
          writeTimeout, pingIntervalMillis, connectionRetryEnabled, doExtensiveHealthChecks);
      HttpCodec resultCodec = resultConnection.newCodec(client, chain, this);

      synchronized (connectionPool) {
        codec = resultCodec;
        return resultCodec;
      }
    } catch (IOException e) {
      throw new RouteException(e);
    }
  }

在newStream()内部调用findHealthyConnection()寻找可用连接。

private RealConnection findHealthyConnection(int connectTimeout, int readTimeout,
      int writeTimeout, int pingIntervalMillis, boolean connectionRetryEnabled,
      boolean doExtensiveHealthChecks) throws IOException {
    while (true) {
      RealConnection candidate = findConnection(connectTimeout, readTimeout, writeTimeout,
          pingIntervalMillis, connectionRetryEnabled);

      // If this is a brand new connection, we can skip the extensive health checks.
      synchronized (connectionPool) {
        if (candidate.successCount == 0) {
          return candidate;
        }
      }

      // Do a (potentially slow) check to confirm that the pooled connection is still good. If it
      // isn't, take it out of the pool and start again.
      if (!candidate.isHealthy(doExtensiveHealthChecks)) {
        noNewStreams();
        continue;
      }

      return candidate;
    }
  }

轮询的方式寻找,利用findConnection()寻找一个候选连接,先判断是否为一个全新的连接,若是,跳过检查,直接返回该连接;若不是,则检查该连接是否依然可用。

3、findConnection()的内部实现

private RealConnection findConnection(int connectTimeout, int readTimeout, int writeTimeout,
      int pingIntervalMillis, boolean connectionRetryEnabled) throws IOException {
    boolean foundPooledConnection = false;
    RealConnection result = null;
    Route selectedRoute = null;
    Connection releasedConnection;
    Socket toClose;
    synchronized (connectionPool) {
      if (released) throw new IllegalStateException("released");
      if (codec != null) throw new IllegalStateException("codec != null");
      if (canceled) throw new IOException("Canceled");

      //尝试使用一个已分配的连接,但可能会限制我们创建新的流
      releasedConnection = this.connection;
      toClose = releaseIfNoNewStreams();
      if (this.connection != null) {
        // We had an already-allocated connection and it's good.
        result = this.connection;
        releasedConnection = null;
      }
      if (!reportedAcquired) {
        // If the connection was never reported acquired, don't report it as released!
        releasedConnection = null;
      }
      
      // 1. 试图从连接池中获取连接
      if (result == null) {     
        Internal.instance.get(connectionPool, address, this, null);
        if (connection != null) {
          foundPooledConnection = true;
          result = connection;
        } else {
          selectedRoute = route;
        }
      }
    }
    closeQuietly(toClose);

    if (releasedConnection != null) {
      eventListener.connectionReleased(call, releasedConnection);
    }
    if (foundPooledConnection) {
      eventListener.connectionAcquired(call, result);
    }
    if (result != null) {
      // 如果上面从已分配或连接池其中一个能找到可用连接,则返回
      return result;
    }

        ... ...//省略代码
    
        //创建一个新的连接            
        result = new RealConnection(connectionPool, selectedRoute);
       // 引用计数
        acquire(result, false);
      }
    }

   ... ...//省略部分代码
  
    synchronized (connectionPool) {
      reportedAcquired = true;

      // 放入连接池
      Internal.instance.put(connectionPool, result);

      //如果另一个并发创建多路连接到相同的地址,则删除重复数据
      if (result.isMultiplexed()) {
        socket = Internal.instance.deduplicate(connectionPool, address, this);
        result = connection;
      }
    }
    closeQuietly(socket);

    eventListener.connectionAcquired(call, result);
    return result;
  }

上面代码中有三个关键点,
1、Internal.instance.get() : 从连接池中获取连接
2、acquire(): 引用计数,具体是对StreamAllocation的计数,通过aquire()与release()操作RealConnection中的List>列表。
3、Internal.instance.put():将连接放入连接池中。
1和3中都有Internal.instance,instance实际就是Internal的一个实例,在创建OkHttpClient时已对instance进行了初始化,

4、初始化Internal的instance

Internal.instance = new Internal() {
      ... ...//省略了部分代码       
      
      @Override 
      public RealConnection get(ConnectionPool pool, Address address,
          StreamAllocation streamAllocation, Route route) {
        return pool.get(address, streamAllocation, route);
      }
     
      //删除重复数据
      @Override 
      public Socket deduplicate(
          ConnectionPool pool, Address address, StreamAllocation streamAllocation) {
        return pool.deduplicate(address, streamAllocation);
      }

      @Override 
      public void put(ConnectionPool pool, RealConnection connection) {
        pool.put(connection);
      }      
      
    };
  }

通过上面代码发现,从连接池获取可用连接和添加新的连接到连接池,实际调用的是ConnectionPool的get()和put()方法。

5、连接池管理ConnectionPool

在分析get和put操作前,先看下ConnectionPool的一些关键属性

//线程池,核心线程数为0,最大线程数为最大整数,线程空闲存活时间60s,
//SynchronousQueue 直接提交策略
private static final Executor executor = new ThreadPoolExecutor(0,
      Integer.MAX_VALUE , 60L , TimeUnit.SECONDS,
      new SynchronousQueue(), Util.threadFactory("OkHttp ConnectionPool", true));

  //空闲连接的最大连接数
  private final int maxIdleConnections;
  //保持连接的周期
  private final long keepAliveDurationNs;
  //双端队列,存放具体的连接
  private final Deque connections = new ArrayDeque<>();
  //用于记录连接失败的route
  final RouteDatabase routeDatabase = new RouteDatabase();


//构造函数
//从这里可以知道,空闲连接的最大连接数为5,保持连接的周期是5分钟
public ConnectionPool() {
    this(5, 5, TimeUnit.MINUTES);
  }

  public ConnectionPool(int maxIdleConnections, long keepAliveDuration, TimeUnit timeUnit) {
    this.maxIdleConnections = maxIdleConnections;
    this.keepAliveDurationNs = timeUnit.toNanos(keepAliveDuration);

    // Put a floor on the keep alive duration, otherwise cleanup will spin loop.
    if (keepAliveDuration <= 0) {
      throw new IllegalArgumentException("keepAliveDuration <= 0: " + keepAliveDuration);
    }
  }

了解了ConnectionPool内部的一些关键属性后,首先看下ConnectionPool 的get()方法。

RealConnection get(Address address, StreamAllocation streamAllocation, Route route) {
    assert (Thread.holdsLock(this));
    for (RealConnection connection : connections) {
      if (connection.isEligible(address, route)) {
        streamAllocation.acquire(connection, true);
        return connection;
      }
    }
    return null;
  }

在get()方法内部对存放具体连接的双端队列connections进行遍历,如果连接有效,则利用acquire()计数。

//StreamAllocation # acquire()
public void acquire(RealConnection connection, boolean reportedAcquired) {
    assert (Thread.holdsLock(connectionPool));
    if (this.connection != null) throw new IllegalStateException();

    this.connection = connection;
    this.reportedAcquired = reportedAcquired;
    //添加到RealConnection的allocations列表
    connection.allocations.add(new StreamAllocationReference(this, callStackTrace));
  }

//StreamAllocation # release()
 private void release(RealConnection connection) {
    for (int i = 0, size = connection.allocations.size(); i < size; i++) {
      Reference reference = connection.allocations.get(i);
      if (reference.get() == this) {
        //从RealConnection的allocations列表中移除
        connection.allocations.remove(i);
        return;
      }
    }
    throw new IllegalStateException();
  }

接着看ConnectionPool 的put()方法。

void put(RealConnection connection) {
    assert (Thread.holdsLock(this));
    if (!cleanupRunning) {
      cleanupRunning = true;
      executor.execute(cleanupRunnable);
    }
    connections.add(connection);
  }

先判断是否需要清理运行中的连接,然后添加新的连接到连接池。接下来看看cleanupRunnable的实现。

private final Runnable cleanupRunnable = new Runnable() {
    @Override public void run() {
      while (true) {
        long waitNanos = cleanup(System.nanoTime());
        if (waitNanos == -1) return;
        if (waitNanos > 0) {
          long waitMillis = waitNanos / 1000000L;
          waitNanos -= (waitMillis * 1000000L);
          synchronized (ConnectionPool.this) {
            try {
              ConnectionPool.this.wait(waitMillis, (int) waitNanos);
            } catch (InterruptedException ignored) {
            }
          }
        }
      }
    }
  };

在cleanupRunnable的run方法会不停的调用cleanup清理并返回下一次清理的时间间隔。然后进入wait,等待下一次的清理。那么cleanup()是怎么计算时间间隔的?

long cleanup(long now) {
    int inUseConnectionCount = 0;
    int idleConnectionCount = 0;
    RealConnection longestIdleConnection = null;
    long longestIdleDurationNs = Long.MIN_VALUE;

    // Find either a connection to evict, or the time that the next eviction is due.
    synchronized (this) {
      //遍历连接
      for (Iterator i = connections.iterator(); i.hasNext(); ) {
        RealConnection connection = i.next();

        //检查连接是否是空闲状态,
        //不是,则inUseConnectionCount + 1
        //是 ,则idleConnectionCount + 1
        if (pruneAndGetAllocationCount(connection, now) > 0) {
          inUseConnectionCount++;
          continue;
        }

        idleConnectionCount++;

        // If the connection is ready to be evicted, we're done.
        long idleDurationNs = now - connection.idleAtNanos;
        if (idleDurationNs > longestIdleDurationNs) {
          longestIdleDurationNs = idleDurationNs;
          longestIdleConnection = connection;
        }
      }

      //如果超过keepAliveDurationNs或maxIdleConnections,
      //从双端队列connections中移除
      if (longestIdleDurationNs >= this.keepAliveDurationNs
          || idleConnectionCount > this.maxIdleConnections) {      
        connections.remove(longestIdleConnection);
      } else if (idleConnectionCount > 0) {      //如果空闲连接次数>0,返回将要到期的时间
        // A connection will be ready to evict soon.
        return keepAliveDurationNs - longestIdleDurationNs;
      } else if (inUseConnectionCount > 0) {
        // 连接依然在使用中,返回保持连接的周期5分钟
        return keepAliveDurationNs;
      } else {
        // No connections, idle or in use.
        cleanupRunning = false;
        return -1;
      }
    }

    closeQuietly(longestIdleConnection.socket());

    // Cleanup again immediately.
    return 0;
  }

从上面可以知道,cleanupRunnable的主要工作是负责连接池的清理和回收。

总结: OkHttp3连接池的复用主要是对双端队列Deque进行操作,通过对StreamAllocation的引用计数实现自动回收。

你可能感兴趣的:(OkHttp3 源码解析 连接池的复用)