深度学习框架PyTorch入门与实践:第四章 神经网络工具箱nn

autograd实现了自动微分系统,然而对深度学习来说过于底层,本章将介绍的nn模块,是构建于autograd之上的神经网络模块。除了nn之外,我们还会介绍神经网络中常用的工具,比如优化器optim、初始化init等。

4.1 nn.Module

第3章中提到,使用autograd可实现深度学习模型,但其抽象程度较低,如果用其来实现深度学习模型,则需要编写的代码量极大。在这种情况下,torch.nn应运而生,其是专门为深度学习设计的模块。torch.nn的核心数据结构是Module,它是一个抽象的概念,既可以表示神经网络中的某个层(layer),也可以表示一个包含很多层的神经网络。在实际使用中,最常见的做法继承nn.Module,撰写自己的网络/层。下面先来看看如何使用nn.Module实现自己的全连接层。全连接层,又名仿射层,输入y和输入x满足y=Wx+b,W和b是可学习的参数。

import torch as t
from torch import nn
from torch.autograd import Variable as V

# 定义线性模型:y = w * x + b
class Linear(nn.Module):    # 继承nn.Module
    def __init__(self,in_features,out_features):
        super(Linear,self).__init__()    # 等价于nn.Module.__init__(self)
        self.w = nn.Parameter(t.randn(in_features,out_features))
        self.b = nn.Parameter(t.randn(out_features))
        
    def forward(self,x):
        xw = x.mm(self.w)
        y = xw + self.b.expand_as(xw)
        return y

net = Linear(4,3)
x = V(t.randn(2,4))
y = net(x)
y

输出如下:

tensor([[ 0.2732,  1.8660,  1.3620],
        [ 0.6374, -0.3646,  1.0089]], grad_fn=)
for name,parameter in layer.named_parameters():
    print(name,parameter)    # w and b

输出如下:

w Parameter containing:
tensor([[-0.3146,  2.5440,  0.0063],
        [ 0.6632, -1.5358,  0.1820],
        [-1.5990,  0.7136,  0.2463],
        [-1.8826,  1.4418,  0.7892]], requires_grad=True)
b Parameter containing:
tensor([ 0.1779,  0.2043, -0.3796], requires_grad=True)

可见,全连接层的实现非常简单,其代码量不超过10行,但需注意以下几点:

  • 自定义层Linear必须继承nn.Module,并且在其构造函数中需调用nn.Module的构造函数,即super(Linear,self).init()或nn.Module.init(self)。
  • 在构造函数init中必须自己定义可学习的参数,并封装成Parameter,如在本例中我们把w和b封装成Parameter。Parameter是一种特殊的Variable,但其默认需要求导(requires_grad=True),感兴趣的读者可以通过nn.Parameter??查看Parameter类的源代码。
  • forward函数实现前向传播过程,其输入可以是一个或多个variable,对x的任何操作也必须是variable支持的操作。
  • 无须写反向传播函数,因其前向传播都是对variable进行操作,nn.Module能够利用autograd自动实现反向传播,这一点比Function简单许多。
  • 使用时,直观上可将net看成数学概念中的函数,调用net(x)即可得到x对应的结果。它等价于net.call(x),在call函数中,主要调用的是net.forward(x),另外还对钩子做了一些处理。所以在实际使用中应尽量使用net(x)而不是使用net.forward(x),关于钩子技术的具体内容将在下文讲到。
  • Module中的可学习参数可以通过named_parameters()或者parameters()返回迭代器,前者会给每个parameter附上名字,使其更具有辨识度。

可见,利用Module实现的全连接层,比利用Function实现的更简单,因其不再需要写反向传播函数。

Module能够自动检测到自己的parameter,并将其作为学习参数。除了parameter,Module还包含子Module,主Module能够递归查找子Module中的parameter。下面再来看看稍微复杂一点的网络:多层感知机。

多层感知机的网络结构如图所示。它由两个全连接层组成,采用sigmoid函数作为激活函数(图中没有画出)。

深度学习框架PyTorch入门与实践:第四章 神经网络工具箱nn_第1张图片
image.png
class Perceptron(nn.Module):
    def __init__(self,in_features,hidden_features,out_features):
        nn.Module.__init__(self)
        self.layer1 = Linear(in_features,hidden_features)    # 此处的Linear是前面自定义的全连接层
        self.layer2 = Linear(hidden_features,out_features)
        
    def forward(self,x):
        x = self.layer1(x)
        x = t.sigmoid(x)
        x = self.layer2(x)
        return x
        
perceptron = Perceptron(3,4,1)
for name,param in perceptron.named_parameters():
    print(name,param.size())

输出如下:

layer1.w torch.Size([3, 4])
layer1.b torch.Size([4])
layer2.w torch.Size([4, 1])
layer2.b torch.Size([1])

可见,即使是稍复杂的多层感知机,其实现依旧很简单。这里需要注意以下两个知识点。

  • 构造函数init中,可利用前面自定义的Linear层(Module)作为当前Module对象的一个子Module,它的可学习参数,也会成为当前Module的可学习参数。
  • 在前向传播函数中,我们有意识地将输出变量都命名为x,是为了能让Python回收一些中间层的输出,从而节省内存。但并不是所有的中间结果都会被回收,有些variable虽然名字被覆盖,但其在反向传播时仍需要用到,此时Python的内存回收模块将通过检查引用计数,不会回收这一部分内存。

Module中parameter的全局命名规范如下:

  • Parameter直接命名。例如self.param_name = nn.Parameter(t.randn(3,4)),命名为param_name。
  • 子Module中的parameter,会在其名字之前加上当前Module的名字。例如self.sub_module = SubModule(),SubModule中有个parameter的名字也叫作param_name,那么二者拼接而成的parameter name就是sub_module.param_name。

为了方便用户使用,PyTorch实现了神经网络中绝大多数的layer,这些layer都继承于nn.Module,封装了可学习参数parameter,并实现了forward函数,且专门针对GPU运算进行了CuDNN优化,其速度和性能都十分优异。本书不准备对nn.Module中的所有层进行详细介绍,具体内容读者可参照官方文档或在IPython/Jupyter中使用nn.layer?查看。阅读文档时应主要关注以下几点。

  • 构造函数的参数,如nn.Linear(in_features,out_features,bias),需关注这三个参数的作用。
  • 属性、可学习参数和子Module。如nn.Linear中有weight和bias两个可学习参数,不包含子Module。
  • 输入输出的形状,如nn.Linear的输入形状是(N,input_features),输出形状为(N,output_features),N是batch_size。

这些自定义layer对输入形状都有假设:输入的不是单个数据,而是一个batch。若想输入一个数据,必须调用unsqueeze(0)函数将数据伪装成batch_size=1的batch。

下面将从应用层面出发,对一些常用的layer做简单介绍,更详细的用法请查看官方文档。

4.2 常用的神经网络层

4.2.1 图像相关层

图像相关层主要包括卷积层(Conv)、池化层(Pool)等,这些层在实际使用中分为一维(1D)、二维(2D)和三维(3D),池化方式又分为平均池化(AvgPool)、最大值池化(MaxPool)、自适应池化(AdaptiveAvgPool)等。卷积层除了常用的前向卷积外,还有逆卷积(TransposeConv)。下面举例说明。

from PIL import Image
from torchvision.transforms import ToTensor, ToPILImage
to_tensor = ToTensor() # img -> tensor
to_pil = ToPILImage()
lena = Image.open('imgs/lena.png')
lena

输出如下:

深度学习框架PyTorch入门与实践:第四章 神经网络工具箱nn_第2张图片
image.png
# 输入是一个batch,batch_size=1
input = to_tensor(lena).unsqueeze(0) 

# 锐化卷积核
kernel = t.ones(3, 3)/-9.
kernel[1][1] = 1
conv = nn.Conv2d(1, 1, (3, 3), 1, bias=False)
conv.weight.data = kernel.view(1, 1, 3, 3)

out = conv(input)
to_pil(out.data.squeeze(0))

处理后的Lena图如下:

深度学习框架PyTorch入门与实践:第四章 神经网络工具箱nn_第3张图片
image.png

图像的卷积操作还有各种变体,有关各种变体的介绍具体可以参照此处的介绍。

池化层可以看成是一种特殊的卷积层,用来下采样。但池化层没有可学习的参数,其weight是固定的。

pool = nn.AvgPool2d(2,2)
list(pool.parameters())

输出如下:

[]
out = pool(input)
to_pil(out.data.squeeze(0))

处理后的Lena图如下:

image.png

除了卷积层和池化层,深度学习中还将常用到以下几个层。

  • Linear:全连接层。
  • BatchNorm:批规范化层,分为1D、2D和3D。除了标准的BatchNorm之外,还有在风格迁移中常用到的InstanceNorm层。
  • Dropout:dropout层,用于防止过拟合,同样分为1D、2D和3D。

下面通过例子讲解它们的使用方法。

# 输入 batch_size=2,维度3
input = t.randn(2, 3)
linear = nn.Linear(3, 4)
h = linear(input)
h

输出:

tensor([[-0.3437,  0.3086,  0.3261, -1.3908],
        [ 0.3508, -0.7137,  0.8659, -0.5121]], grad_fn=)
# 4 channel,初始化标准差为4,均值为0
bn = nn.BatchNorm1d(4)
bn.weight.data = t.ones(4) * 4
bn.bias.data = t.zeros(4)

bn_out = bn(h)
# 注意输出的均值和方差
# 方差是标准差的平方,计算无偏方差分母会减1
# 使用unbiased=False 分母不减1
bn_out.mean(0), bn_out.var(0, unbiased=False)

输出:

(tensor([ 0.0000e+00,  0.0000e+00, -2.3842e-07,  0.0000e+00],
        grad_fn=),
 tensor([15.9987, 15.9994, 15.9978, 15.9992], grad_fn=))
# 每个元素以0.5的概率舍弃
dropout = nn.Dropout(0.5)
o = dropout(bn_out)
o # 有一半左右的数变为0

输出:

tensor([[-7.9997,  0.0000, -0.0000, -7.9998],
        [ 0.0000, -0.0000,  7.9995,  7.9998]], grad_fn=)

以上很多例子中都对Module的属性直接操作,其大多数是可学习参数,一般会随着学习的进行而不断改变。实际使用中除非需要使用特殊的初始化,否则应尽量不要直接修改这些参数。

4.2.2 激活函数

PyTorch实现了常见的激活函数,其具体的接口信息可参见官方文档。这些激活函数可作为独立的layer使用。这里将介绍最常用的激活函数ReLU,其数学表达式为:

relu = nn.ReLU(inplace=True)
input = t.randn(2, 3)
print(input)
output = relu(input)
print(output) # 小于0的都被截断为0
# 等价于input.clamp(min=0)

输出:

tensor([[-1.1303,  0.9884,  1.8299],
        [-1.0804,  1.4700, -1.0847]])
tensor([[0.0000, 0.9884, 1.8299],
        [0.0000, 1.4700, 0.0000]])

ReLU函数有个inplace参数,如果设为True,它会把输出直接覆盖到输入中,这样可以节省内存/显存。之所以可以覆盖是因为在计算ReLU的反向传播时,只需根据输出就能推算出反向传播的梯度。但是只有少数的autograd操作支持inplace操作(如variable.sigmoid_()),除非你明确地知道自己在做什么,否则一般不要使用inplace操作。在以上例子中,都是将每一层的输出直接作为下一层的输入,这种网络称为前馈传播网络(Feedforward Neural Network)。对于此类网络,如果每次都写复杂的forward函数会有些麻烦,在此就有两种简化方式,ModuleList和Sequential。其中Sequential是一个特殊的Module,它包含几个子Module,前向传播时会将输入一层接一层地传递下去。ModuleList也是一个特殊的Module,可以包含几个子Module,可以像用list一样使用它,但不能直接把输入传给ModuleList。下面我们举例说明。

# Sequential的三种写法
net1 = nn.Sequential()
net1.add_module('conv', nn.Conv2d(3, 3, 3))
net1.add_module('batchnorm', nn.BatchNorm2d(3))
net1.add_module('activation_layer', nn.ReLU())

net2 = nn.Sequential(
        nn.Conv2d(3, 3, 3),
        nn.BatchNorm2d(3),
        nn.ReLU()
        )

from collections import OrderedDict
net3= nn.Sequential(OrderedDict([
          ('conv1', nn.Conv2d(3, 3, 3)),
          ('bn1', nn.BatchNorm2d(3)),
          ('relu1', nn.ReLU())
        ]))
print('net1:', net1)
print('net2:', net2)
print('net3:', net3)

输出:

net1: Sequential(
  (conv): Conv2d(3, 3, kernel_size=(3, 3), stride=(1, 1))
  (batchnorm): BatchNorm2d(3, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (activation_layer): ReLU()
)
net2: Sequential(
  (0): Conv2d(3, 3, kernel_size=(3, 3), stride=(1, 1))
  (1): BatchNorm2d(3, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (2): ReLU()
)
net3: Sequential(
  (conv1): Conv2d(3, 3, kernel_size=(3, 3), stride=(1, 1))
  (bn1): BatchNorm2d(3, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (relu1): ReLU()
)
# 可根据名字或序号取出子module
net1.conv, net2[0], net3.conv1

输出:

(Conv2d(3, 3, kernel_size=(3, 3), stride=(1, 1)),
 Conv2d(3, 3, kernel_size=(3, 3), stride=(1, 1)),
 Conv2d(3, 3, kernel_size=(3, 3), stride=(1, 1)))
input = t.rand(1, 3, 4, 4)
output = net1(input)
output = net2(input)
output = net3(input)
output = net3.relu1(net1.batchnorm(net1.conv(input)))
modellist = nn.ModuleList([nn.Linear(3,4), nn.ReLU(), nn.Linear(4,2)])
input = t.randn(1, 3)
for model in modellist:
    input = model(input)
# 下面会报错,因为modellist没有实现forward方法
# output = modelist(input)

看到这里,读者可能会问,为何不直接使用Python中自带的list,而非要多此一举呢?这是因为ModuleList是Module的子类,当在Module中使用它时,就能自动识别为子Module。

下面我们举例说明。

class MyModule(nn.Module):
    def __init__(self):
        super(MyModule, self).__init__()
        self.list = [nn.Linear(3, 4), nn.ReLU()]
        self.module_list = nn.ModuleList([nn.Conv2d(3, 3, 3), nn.ReLU()])
    def forward(self):
        pass
model = MyModule()
model

输出:

MyModule(
  (module_list): ModuleList(
    (0): Conv2d(3, 3, kernel_size=(3, 3), stride=(1, 1))
    (1): ReLU()
  )
)
for name, param in model.named_parameters():
    print(name, param.size())

输出:

module_list.0.weight torch.Size([3, 3, 3, 3])
module_list.0.bias torch.Size([3])

可见,list中的子Module并不能被主Module识别,而ModuleList中的子Module能够被主Module识别。这意味着如果用list保存子Module,将无法调整其参数,因其未加入到主Module的参数中。

除ModuleList之外还有ParameterList,它是一个可以包含多个parameter的类list对象。在实际使用中,使用方式与ModuleList类似。在构造函数init中用到list、tuple、dict等对象时,一定要思考是否应该用ModuleList或ParameterList代替。

4.2.3 循环神经网络层

近些年,随着深度学习和自然语言处理的结合加深,循环神经网络(RNN)的使用也越来越多,关于RNN的基础知识,推荐阅读colah的文章
入门。PyTorch中实现了如今最常用的三种RNN:RNN(vanilla RNN)、LSTM和GRU。此外还有对应的三种RNNCell。

RNN和RNNCell层的区别在于前者能够处理整个序列,而后者一次只处理序列中一个时间点的数据,前者封装更完备更易于使用,后者更具灵活性。RNN层可以通过组合调用RNNCell来实现。

t.manual_seed(1000)
# 输入:batch_size=3,序列长度都为2,序列中每个元素占4维
input = t.randn(2, 3, 4)
# lstm输入向量4维,隐藏元3,1层
lstm = nn.LSTM(4, 3, 1)
# 初始状态:1层,batch_size=3,3个隐藏元
h0 = t.randn(1, 3, 3)
c0 = t.randn(1, 3, 3)
out, hn = lstm(input, (h0, c0))
out

输出:

tensor([[[-0.3610, -0.1643,  0.1631],
         [-0.0613, -0.4937, -0.1642],
         [ 0.5080, -0.4175,  0.2502]],

        [[-0.0703, -0.0393, -0.0429],
         [ 0.2085, -0.3005, -0.2686],
         [ 0.1482, -0.4728,  0.1425]]], grad_fn=)
t.manual_seed(1000)
input = t.randn(2, 3, 4)
# 一个LSTMCell对应的层数只能是一层
lstm = nn.LSTMCell(4, 3)
hx = t.randn(3, 3)
cx = t.randn(3, 3)
out = []
for i_ in input:
    hx, cx=lstm(i_, (hx, cx))
    out.append(hx)
t.stack(out)

输出:

tensor([[[-0.3610, -0.1643,  0.1631],
         [-0.0613, -0.4937, -0.1642],
         [ 0.5080, -0.4175,  0.2502]],

        [[-0.0703, -0.0393, -0.0429],
         [ 0.2085, -0.3005, -0.2686],
         [ 0.1482, -0.4728,  0.1425]]], grad_fn=)

词向量在自然语言中应用十分广泛,PyTorch同样提供了Embedding层。

# 有4个词,每个词用5维的向量表示
embedding = nn.Embedding(4, 5)
# 可以用预训练好的词向量初始化embedding
embedding.weight.data = t.arange(0,20).view(4,5)
input = t.arange(3, 0, -1).long()
output = embedding(input)
output

输出:

tensor([[15, 16, 17, 18, 19],
        [10, 11, 12, 13, 14],
        [ 5,  6,  7,  8,  9]], grad_fn=)
4.2.4 损失函数

在深度学习中药用到各种各样的损失函数(Loss Function),这些损失函数可看作是一种特殊的layer,PyTorch也将这些损失函数实现为nn.Module的子类。然而在实际使用中通常将这些孙淑函数专门提取出来,作为独立的一部分。详细的loss使用请参考官方文档。这里以分类中最常用的交叉熵损失CrocsEntropyLoss为例讲解。

# batch_size=3,计算对应每个类别的分数(只有两个类别)
score = t.randn(3, 2)
# 三个样本分别属于1,0,1类,label必须是LongTensor
label = t.Tensor([1, 0, 1]).long()

# loss与普通的layer无差异
criterion = nn.CrossEntropyLoss()
loss = criterion(score, label)
loss

输出:

tensor(0.5944)

4.3 优化器

PyTorch将深度学习中常用的优化方法全部封装在torch.optim中,其设计十分灵活,能够很方便地扩展城自定义的优化方法。

所有的优化方法都是继承自类optim.Optimizer,并实现了自己的优化步骤。下面就以最基本的优化方法——随机梯度下降法(SGD)举例说明。这里需要重点掌握:

  • 优化方法的基本使用方法。
  • 如何对模型的不同部分设置不同的学习率。
  • 如何调整学习率。
# 首先定义一个LeNet网络
class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.features = nn.Sequential(
                    nn.Conv2d(3, 6, 5),
                    nn.ReLU(),
                    nn.MaxPool2d(2,2),
                    nn.Conv2d(6, 16, 5),
                    nn.ReLU(),
                    nn.MaxPool2d(2,2)
        )
        self.classifier = nn.Sequential(
            nn.Linear(16 * 5 * 5, 120),
            nn.ReLU(),
            nn.Linear(120, 84),
            nn.ReLU(),
            nn.Linear(84, 10)
        )

    def forward(self, x):
        x = self.features(x)
        x = x.view(-1, 16 * 5 * 5)
        x = self.classifier(x)
        return x

net = Net()
from torch import  optim
optimizer = optim.SGD(params=net.parameters(), lr=1)
optimizer.zero_grad() # 梯度清零,等价于net.zero_grad()

input = t.randn(1, 3, 32, 32)
output = net(input)
output.backward(output) # fake backward

optimizer.step() # 执行优化
# 为不同子网络设置不同的学习率,在finetune中经常用到
# 如果对某个参数不指定学习率,就使用最外层的默认学习率
optimizer =optim.SGD([
                {'params': net.features.parameters()}, # 学习率为1e-5
                {'params': net.classifier.parameters(), 'lr': 1e-2}
            ], lr=1e-5)
optimizer

输出:

SGD (
Parameter Group 0
    dampening: 0
    lr: 1e-05
    momentum: 0
    nesterov: False
    weight_decay: 0

Parameter Group 1
    dampening: 0
    lr: 0.01
    momentum: 0
    nesterov: False
    weight_decay: 0
)
# 只为两个全连接层设置较大的学习率,其余层的学习率较小
special_layers = nn.ModuleList([net.classifier[0], net.classifier[3]])
special_layers_params = list(map(id, special_layers.parameters()))
base_params = filter(lambda p: id(p) not in special_layers_params,
                     net.parameters())

optimizer = t.optim.SGD([
            {'params': base_params},
            {'params': special_layers.parameters(), 'lr': 0.01}
        ], lr=0.001 )
optimizer

输出:

SGD (
Parameter Group 0
    dampening: 0
    lr: 0.001
    momentum: 0
    nesterov: False
    weight_decay: 0

Parameter Group 1
    dampening: 0
    lr: 0.01
    momentum: 0
    nesterov: False
    weight_decay: 0
)

调整学习率主要有两种做法。一种是修改optimizer.param_groups中对应的学习率,另一种是新建优化器(更简单也是更推荐的做法),由于optimize十分轻量级,构建开销很小,故可以构建新的optimize。但是新建优化器会重新初始化动量等状态信息,这对使用动量的优化器来说(如带momentum的sgd),可能会造成损失函数在收敛过程中出现震荡。

# 方法1: 调整学习率,新建一个optimizer
old_lr = 0.1
optimizer1 =optim.SGD([
                {'params': net.features.parameters()},
                {'params': net.classifier.parameters(), 'lr': old_lr*0.1}
            ], lr=1e-5)
optimizer1

输出:

SGD (
Parameter Group 0
    dampening: 0
    lr: 1e-05
    momentum: 0
    nesterov: False
    weight_decay: 0

Parameter Group 1
    dampening: 0
    lr: 0.010000000000000002
    momentum: 0
    nesterov: False
    weight_decay: 0
)
# 方法2: 调整学习率, 手动decay, 保存动量
for param_group in optimizer.param_groups:
    param_group['lr'] *= 0.1 # 学习率为之前的0.1倍
optimizer

输出:

SGD (
Parameter Group 0
    dampening: 0
    lr: 0.0001
    momentum: 0
    nesterov: False
    weight_decay: 0

Parameter Group 1
    dampening: 0
    lr: 0.001
    momentum: 0
    nesterov: False
    weight_decay: 0
)

4.4 nn.functional

nn中还有一个很常用的模块:nn.functional。nn中的大多数layer在functional中都有一个与之对应的函数。nn.functional中的函数和nn.Module主要区别在于,用nn.Module实现的layers是一个特殊的类,都是由class Layer(nn.Module)定义,会自动提取科学系参数;而nn.functional中的函数更像是纯函数,由def function(input)定义。下面举例说明functional的使用,并对比二者的不同。

input = t.randn(2, 3)
model = nn.Linear(3, 4)
output1 = model(input)
output2 = nn.functional.linear(input, model.weight, model.bias)
output1 == output2

输出:

tensor([[1, 1, 1, 1],
        [1, 1, 1, 1]], dtype=torch.uint8)
b = nn.functional.relu(input)
b2 = nn.ReLU()(input)
b == b2

输出:

tensor([[1, 1, 1],
        [1, 1, 1]], dtype=torch.uint8)

此时读者可能会问,应该什么时候使用nn.Module,什么时候使用nn.functional呢?答案很简单,如果模型有可学习的参数,最好用nn.Module,否则既可以使用nn.functional也可以使用nn.Module,二者在性能上没有太大差异,具体的使用取决于个人的喜好。如激活函数(ReLU、sigmoid、tanh),池化(MaxPool)等层由于没有可学习参数,则可以使用对应的functional函数代替,而对于卷积、全连接等具有可学习参数的网络建议使用nn.Module。下面举例说明,如何在模型中搭配使用nn.Module和nn.functional。另外虽然dropout操作也没有可学习操作,但建议还是使用nn.Dropout而不是nn.functional.dropout,因为dropout在训练和测试两个阶段的行为有所差别,使用nn.Module对象能够通过model.eval操作加以区分。

from torch.nn import functional as F
class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(3, 6, 5)
        self.conv2 = nn.Conv2d(6, 16, 5)
        self.fc1 = nn.Linear(16 * 5 * 5, 120)
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 10)

    def forward(self, x):
        x = F.pool(F.relu(self.conv1(x)), 2)
        x = F.pool(F.relu(self.conv2(x)), 2)
        x = x.view(-1, 16 * 5 * 5)
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        return x

对于不具备可学习参数的层(激活层、池化层等),将它们用函数代替,这样则可以不用放置在构造函数init中。对于有可学习参数的模块,也可以用functional来代替,只不过实现起来较为繁琐,需要手动定义参数parameter,如前面实现自定义的全连接层,就可将weight和bias两个参数单独拿出来,在构造函数中初始化为parameter。

class MyLinear(nn.Module):
    def __init__(self):
        super(MyLinear, self).__init__()
        self.weight = nn.Parameter(t.randn(3, 4))
        self.bias = nn.Parameter(t.zeros(3))
    def forward(self):
        return F.linear(input, weight, bias)

关于nn.functional的设计初衷,以及它和nn.Module更多的比较说明,可参看论坛的讨论和作者说明。

4.5 初始化策略

在深度学习中参数的初始化十分重要,良好的初始化能让模型更快收敛,并达到更高水平,而糟糕的初始化则可能使得模型迅速瘫痪。PyTorch中nn.Module的模块参数都采取了较为合理的初始化策略,因此一般不用我们考虑,当然我们也可以用自定义初始化去代替系统的默认初始化。而当我们在使用Parameter时,自定义初始化则尤为重要,因t.Tensor()返回的是内存中的随机数,很可能会有极大值,这在实际训练网络中会造成溢出或者梯度消失。PyTorch中nn.init模块就是专门为初始化而设计,如果某种初始化策略nn.init不提供,用户也可以自己直接初始化。

# 利用nn.init初始化
from torch.nn import init
linear = nn.Linear(3, 4)

t.manual_seed(1)
# 等价于 linear.weight.data.normal_(0, std)
init.xavier_normal_(linear.weight)

输出:

Parameter containing:
tensor([[ 0.3535,  0.1427,  0.0330],
        [ 0.3321, -0.2416, -0.0888],
        [-0.8140,  0.2040, -0.5493],
        [-0.3010, -0.4769, -0.0311]], requires_grad=True)
# 直接初始化
import math
t.manual_seed(1)

# xavier初始化的计算公式
std = math.sqrt(2)/math.sqrt(7.)
linear.weight.data.normal_(0,std)

输出:

tensor([[ 0.3535,  0.1427,  0.0330],
        [ 0.3321, -0.2416, -0.0888],
        [-0.8140,  0.2040, -0.5493],
        [-0.3010, -0.4769, -0.0311]])
# 对模型的所有参数进行初始化
for name, params in net.named_parameters():
    if name.find('linear') != -1:
        # init linear
        params[0] # weight
        params[1] # bias
    elif name.find('conv') != -1:
        pass
    elif name.find('norm') != -1:
        pass

4.6 nn.Module深入分析

如果想要更深入地理解nn.Module,究其原理是很有必要的。首先来看看nn.Module基类的构造函数:

def __init__(self):
    self._parameters = OrderedDict()
    self._modules = OrderedDict()
    self._buffers = OrderedDict()
    self._backward_hooks = OrderedDict()
    self._forward_hooks = OrderedDict()
    self.training = True

其中每个属性的解释如下:

  • _parameters:字典,保存用户直接设置的parameter,self.param1 = nn.Parameter(t.randn(3, 3))会被检测到,在字典中加入一个key为'param',value为对应parameter的item。而self.submodule = nn.Linear(3, 4)中的parameter则不会存于此。
  • _modules:子module,通过self.submodel = nn.Linear(3, 4)指定的子module会保存于此。
  • _buffers:缓存。如batchnorm使用momentum机制,每次前向传播需用到上一次前向传播的结果。
  • _backward_hooks与_forward_hooks:钩子技术,用来提取中间变量,类似variable的hook。
  • training:BatchNorm与Dropout层在训练阶段和测试阶段中采取的策略不同,通过判断training值来决定前向传播策略。

上述几个属性中,_parameters、_modules和_buffers这三个字典中的键值,都可以通过self.key方式获得,效果等价于self._parameters['key'].

下面举例说明。

class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        # 等价与self.register_parameter('param1' ,nn.Parameter(t.randn(3, 3)))
        self.param1 = nn.Parameter(t.rand(3, 3))
        self.submodel1 = nn.Linear(3, 4) 
    def forward(self, input):
        x = self.param1.mm(input)
        x = self.submodel1(x)
        return x
net = Net()
net

输出:

Net(
  (submodel1): Linear(in_features=3, out_features=4, bias=True)
)
net._modules

输出:

OrderedDict([('submodel1', Linear(in_features=3, out_features=4, bias=True))])
net._parameters

输出:

OrderedDict([('param1', Parameter containing:
              tensor([[0.3398, 0.5239, 0.7981],
                      [0.7718, 0.0112, 0.8100],
                      [0.6397, 0.9743, 0.8300]], requires_grad=True))])
net.param1 # 等价于net._parameters['param1']

输出:

Parameter containing:
tensor([[0.3398, 0.5239, 0.7981],
        [0.7718, 0.0112, 0.8100],
        [0.6397, 0.9743, 0.8300]], requires_grad=True)
for name, param in net.named_parameters():
    print(name, param.size())

输出:

param1 torch.Size([3, 3])
submodel1.weight torch.Size([4, 3])
submodel1.bias torch.Size([4])
for name, submodel in net.named_modules():
    print(name, submodel)

输出:

 Net(
  (submodel1): Linear(in_features=3, out_features=4, bias=True)
)
submodel1 Linear(in_features=3, out_features=4, bias=True)
bn = nn.BatchNorm1d(2)
input = t.rand(3, 2)
output = bn(input)
bn._buffers

输出:

OrderedDict([('running_mean', tensor([0.0514, 0.0749])),
             ('running_var', tensor([0.9116, 0.9068])),
             ('num_batches_tracked', tensor(1))])

nn.Module在实际使用中可能层层嵌套,一个module包含若干个子module,每一个子module又包含了更多的子module。为方便用户访问各个子module,nn.Module实现了很多方法,如函数children可以查看直接子module,函数module可以查看所有的子module(包括当前module)。与之相对应的还有函数named_childen和named_modules,其能够在返回module列表的同时返回它们的名字。

x = t.arange(0, 12).view(3, 4).float()
model = nn.Dropout()
# 在训练阶段,会有一半左右的数被随机置为0
model(x)

输出:

tensor([[ 0.,  0.,  0.,  0.],
        [ 8.,  0.,  0., 14.],
        [ 0., 18., 20.,  0.]])
model.training  = False
# 在测试阶段,dropout什么都不做
model(x)

输出:

tensor([[ 0.,  1.,  2.,  3.],
        [ 4.,  5.,  6.,  7.],
        [ 8.,  9., 10., 11.]])

对于batchnorm、dropout、instancenorm等在训练和测试阶段行为差距巨大的层,如果在测试时不将其training值设为True,则可能会有很大影响,这在实际使用中要千万注意。虽然可通过直接设置training属性,来将子module设为train和eval模式,但这种方式较为繁琐,因如果一个模型具有多个dropout层,就需要为每个dropout层指定training属性。更为推荐的做法是调用model.train()函数,它会将当前module及其子module中的所有training属性都设为True,相应的,model.eval()函数会把training属性都设为False。

print(net.training, net.submodel1.training)
net.eval()
net.training, net.submodel1.training

输出:

True True

(False, False)
list(net.named_modules())

输出:

[('', Net(
    (submodel1): Linear(in_features=3, out_features=4, bias=True)
  )), ('submodel1', Linear(in_features=3, out_features=4, bias=True))]

register_forward_hook与register_backward_hook,这两个函数的功能类似于variable函数的register_hook,可在module前向传播或反向传播时注册钩子。每次前向传播执行结束后会执行钩子函数(hook)。前向传播的钩子函数具有如下形式:hook(module, input, output) -> None,而反向传播则具有如下形式:hook(module, grad_input, grad_output) -> Tensor or None。钩子函数不应修改输入和输出,并且在使用后应及时删除,以避免每次都运行钩子增加运行负载。钩子函数主要用在获取某些中间结果的情景,如中间某一层的输出或某一层的梯度。这些结果本应写在forward函数中,但如果在forward函数中专门加上这些处理,可能会使处理逻辑比较复杂,这时候使用钩子技术就更合适一些。下面考虑一种场景,有一个预训练好的模型,需要提取模型的某一层(不是最后一层)的输出作为特征进行分类,但又不希望修改其原有的模型定义文件,这时就可以利用钩子函数。下面给出实现的伪代码。

model = VGG()
features = t.Tensor()
def hook(module, input, output):
    '''把这层的输出拷贝到features中'''
    features.copy_(output.data)

handle = model.layer8.register_forward_hook(hook)
_ = model(input)
# 用完hook后删除
handle.remove()

nn.Module对象在构造函数中的行为看起来有些怪异,如果想要真正掌握其原理,就需要看两个魔法方法getattrsetattr。在Python中有两个常用的buildin方法getattr和setattr,getattr(obj, 'attr1')等价于obj.attr,如果getattr函数无法找到所需属性,Python会转而调用obj.getattr('attr1')方法,即getattr函数无法找到的交给getattr函数处理,没有实现getattr或者getattr也无法处理的就会raise AttributeError。setattr(obj, 'name', value)等价于obj.name=value,如果obj对象实现了setattr方法,setattr会直接调用obj.setattr('name', value),否则调用buildin方法。总结一下:

  • result = obj.name会调用buildin函数getattr(obj, 'name'),如果该属性找不到,会调用obj.getattr('name')
  • obj.name = value会调用buildin函数setattr(obj, 'name', value),如果obj对象实现了setattr方法,setattr会直接调用obj.setattr('name', value')

nn.Module实现了自定义的setattr函数,当执行module.name=value时,会在setattr中判断value是否为Parameter或nn.Module对象,如果是则将这些对象加到_parameters和_modules两个字典中,而如果是其它类型的对象,如Variable、list、dict等,则调用默认的操作,将这个值保存在dict中。

module = nn.Module()
module.param = nn.Parameter(t.ones(2, 2))
module._parameters

输出:

OrderedDict([('param', Parameter containing:
              tensor([[1., 1.],
                      [1., 1.]], requires_grad=True))])
submodule1 = nn.Linear(2, 2)
submodule2 = nn.Linear(2, 2)
module_list =  [submodule1, submodule2]
# 对于list对象,调用buildin函数,保存在__dict__中
module.submodules = module_list
print('_modules: ', module._modules)
print("__dict__['submodules']:",module.__dict__.get('submodules'))

输出:

_modules:  OrderedDict()
__dict__['submodules']: [Linear(in_features=2, out_features=2, bias=True), Linear(in_features=2, out_features=2, bias=True)]
module_list = nn.ModuleList(module_list)
module.submodules = module_list
print('ModuleList is instance of nn.Module: ', isinstance(module_list, nn.Module))
print('_modules: ', module._modules)
print("__dict__['submodules']:", module.__dict__.get('submodules'))

输出:

ModuleList is instance of nn.Module:  True
_modules:  OrderedDict([('submodules', ModuleList(
  (0): Linear(in_features=2, out_features=2, bias=True)
  (1): Linear(in_features=2, out_features=2, bias=True)
))])
__dict__['submodules']: None

因_modules和_parameters中的item未保存在dict中,所以默认的getattr方法无法获取它,因而nn.Module实现了自定义的getattr方法,如果默认的getattr无法处理,就调用自定义的getattr方法,尝试从_modules、_parameters和_buffers这三个字典中获取。

getattr(module, 'training') # 等价于module.training
# error
# module.__getattr__('training')

输出:

True
module.attr1 = 2
getattr(module, 'attr1')
# 报错
# module.__getattr__('attr1')

输出:

2
# 即module.param, 会调用module.__getattr__('param')
getattr(module, 'param')

输出:

Parameter containing:
tensor([[1., 1.],
        [1., 1.]], requires_grad=True)

在PyTorch中保存模型十分简单,所有的Module对象都具有state_dict()函数,返回当前Module所有的状态数据。将这些状态数据保存后,下次使用模型时即可利用model.load_state_dict()函数将状态加载进来。优化器(optimizer)也有类似的机制,不过一般并不需要保存优化器的运行状态。

# 保存模型
t.save(net.state_dict(), 'net.pth')

# 加载已保存的模型
net2 = Net()
net2.load_state_dict(t.load('net.pth'))

输出:

IncompatibleKeys(missing_keys=[], unexpected_keys=[])

实际上还有另外一种保存方法,但因其严重依赖模型定义方式及文件路径结构等,很容易出问题,因而不建议使用。

t.save(net, 'net_all.pth')
net2 = t.load('net_all.pth')
net2

输出:

Net(
  (submodel1): Linear(in_features=3, out_features=4, bias=True)
)

将Module放在GPU上运行也十分简单,只需两步:

  • model = model.cuda():将模型的所有参数转存到GPU
  • input.cuda():将输入数据也放置到GPU上

至于如何在多个GPU上并行计算,PyTorch也提供了两个函数,可实现简单高效的并行GPU计算

  • nn.parallel.data_parallel(module, inputs, device_ids=None, output_device=None, dim=0, module_kwargs=None)
  • class torch.nn.DataParallel(module, device_ids=None, output_device=None, dim=0)

可见二者的参数十分相似,通过device_ids参数可以指定在哪些GPU上进行优化,output_device指定输出到哪个GPU上。唯一的不同就在于前者直接利用多GPU并行计算得出结果,而后者则返回一个新的module,能够自动在多GPU上进行并行加速。

# method 1
new_net = nn.DataParallel(net, device_ids=[0, 1])
output = new_net(input)

# method 2
output = nn.parallel.data_parallel(new_net, input, device_ids=[0, 1])

DataParallel并行的方式,是将输入一个batch的数据均分成多份,分别送到对应的GPU进行计算,各个GPU得到的梯度累加。与Module相关的所有数据也都会以浅复制的方式复制多份,在此需要注意,在module中属性应该是只读的。

4.7 nn和autograd的关系

nn.Module利用的也是autograd技术,其主要工作是实现前向传播。在forward函数中,nn.Module对输入的tensor进行的各种操作,本质上都是用到了autograd技术。这里需要对比autograd.Function和nn.Module之间的区别:

  • autograd.Function利用了Tensor对autograd技术的扩展,为autograd实现了新的运算op,不仅要实现前向传播还要手动实现反向传播。
  • nn.Module利用了autograd技术,对nn的功能进行扩展,实现了深度学习中更多的层。只需实现前向传播功能,autograd即会自动实现反向传播。
  • nn.functional是一些autograd操作的集合,是经过封装的函数。

作为两大类扩充PyTorch接口的方法,我们在实际使用中应该如何选择呢?如果某一个操作,在autograd中尚未支持,那么只能实现Function接口对应的前向传播和反向传播。如果某些时候利用autograd接口比较复杂,则可以利用Function将多个操作聚合,实现优化,正如第三章所实现的Sigmoid一样,比直接利用autograd低级别的操作要快。而如果只是想在深度学习中增加某一层,使用nn.Module进行封装则更为简单高效。

4.8 小试牛刀:用50行代码搭建ResNet

Kaiming He的深度残差网络(ResNet)在深度学习的发展中起到了很重要的作用,ResNet不仅一举拿下了当年CV下多个比赛项目的冠军,更重要的是这一结构解决了训练极深网络时的梯度消失问题。

首先来看看ResNet的网络结构,这里选取的是ResNet的一个变种:ResNet34。ResNet的网络结构如图4-2所示,可见除了最开始的卷积池化和最后的池化全连接之外,网络中有很多结构相似的单元,这些重复单元的共同点就是有个跨层直连的shortcut。ResNet中将一个跨层直连的单元称为Residual block,其结构如图4-3所示,左边部分是普通的卷积网络结构,右边是直连,但如果输入和输出的通道数不一致,或其步长不为1,那么就需要有一个专门的单元将二者转成一致,使其可以相加。

另外我们可以发现Residual block的大小也是有规律的,在最开始的pool之后有连续的几个一模一样的Residual block单元,这些单元的通道数一样,在这里我们将这几个拥有多个Residual block单元的结构称之为layer,注意和之前讲的layer区分开来,这里的layer是几个层的集合。

考虑到Residual block和layer出现了多次,我们可以把它们实现为一个子Module或函数。这里我们将Residual block实现为一个子moduke,而将layer实现为一个函数。下面是实现代码,规律总结如下:

  • 对于模型中的重复部分,实现为子module或用函数生成相应的modulemake_layer。
  • nn.Module和nn.Functional结合使用。
  • 尽量使用nn.Seqential。
深度学习框架PyTorch入门与实践:第四章 神经网络工具箱nn_第4张图片
image.png
深度学习框架PyTorch入门与实践:第四章 神经网络工具箱nn_第5张图片
image.png
class ResidualBlock(nn.Module):
    '''
    实现子module: Residual Block
    '''
    def __init__(self, inchannel, outchannel, stride=1, shortcut=None):
        super(ResidualBlock, self).__init__()
        self.left = nn.Sequential(
                nn.Conv2d(inchannel,outchannel,3,stride, 1,bias=False),
                nn.BatchNorm2d(outchannel),
                nn.ReLU(inplace=True),
                nn.Conv2d(outchannel,outchannel,3,1,1,bias=False),
                nn.BatchNorm2d(outchannel) )
        self.right = shortcut

    def forward(self, x):
        out = self.left(x)
        residual = x if self.right is None else self.right(x)
        out += residual
        return F.relu(out)

class ResNet(nn.Module):
    '''
    实现主module:ResNet34
    ResNet34 包含多个layer,每个layer又包含多个residual block
    用子module来实现residual block,用_make_layer函数来实现layer
    '''
    def __init__(self, num_classes=1000):
        super(ResNet, self).__init__()
        # 前几层图像转换
        self.pre = nn.Sequential(
                nn.Conv2d(3, 64, 7, 2, 3, bias=False),
                nn.BatchNorm2d(64),
                nn.ReLU(inplace=True),
                nn.MaxPool2d(3, 2, 1))
        
        # 重复的layer,分别有3,4,6,3个residual block
        self.layer1 = self._make_layer( 64, 64, 3)
        self.layer2 = self._make_layer( 64, 128, 4, stride=2)
        self.layer3 = self._make_layer( 128, 256, 6, stride=2)
        self.layer4 = self._make_layer( 256, 512, 3, stride=2)

        #分类用的全连接
        self.fc = nn.Linear(512, num_classes)
    
    def _make_layer(self,  inchannel, outchannel, block_num, stride=1):
        '''
        构建layer,包含多个residual block
        '''
        shortcut = nn.Sequential(
                nn.Conv2d(inchannel,outchannel,1,stride, bias=False),
                nn.BatchNorm2d(outchannel))
        
        layers = []
        layers.append(ResidualBlock(inchannel, outchannel, stride, shortcut))
        
        for i in range(1, block_num):
            layers.append(ResidualBlock(outchannel, outchannel))
        return nn.Sequential(*layers)
        
    def forward(self, x):
        x = self.pre(x)
        
        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)

        x = F.avg_pool2d(x, 7)
        x = x.view(x.size(0), -1)
        return self.fc(x)
model = ResNet()
input  = t.randn(1, 3, 224, 224)
o = model(input)

感兴趣的读者可以尝试实现Google的Inception网络结构或ResNet的其它变体,看看如何能够简洁明了地实现它,实现代码尽量控制在80行以内(本例去掉空行和注释总共不超过50行)。另外,与PyTorch配套的图像工具包torchvision已经实现了深度学习中大多数经典的模型,其中就包括ResNet34,读者可以通过下面两行代码使用:

from torchvision import models
model = models.resnet34()

本例中ResNet34的实现就是参考了torchvision中的实现并做了简化,感兴趣的读者可以阅读相应的源码,比较这里的实现和torchvision中实现的不同。

通过本章的学习,读者可以掌握PyTorch中神经网络工具箱中大部分类和函数的用法。关于这部分的更多内容,读者可以参考官方文档,文档中有更多详细的说明。

你可能感兴趣的:(深度学习框架PyTorch入门与实践:第四章 神经网络工具箱nn)